首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to determine if a combination of previously undifferentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and exogenous bone morphogenetic protein-2 (BMP-2) delivered via heparin-conjugated PLGA nanoparticles (HCPNs) would extensively regenerate bone in vivo. In vitro testing found that the HCPNs were able to release BMP-2 over a 2-week period. Human BMMSCs cultured in medium containing BMP-2-loaded HCPNs for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) mRNA, while cells without BMP-2 expressed only ALP. In vivo testing found that undifferentiated BMMSCs with BMP-2-loaded HCPNs induce far more extensive bone formation than either implantation of BMP-2-loaded HCPNs or osteogenically differentiated BMMSCs. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of undifferentiated BMMSCs and BMP-2 delivery via HCPNs. Sung Eun Kim and Oju Jeon equally contributed to this work  相似文献   

2.
3.
Previous studies demonstrated that mitochondrial fission arguments the stemness of bone marrow-derived mesenchymal stem cells (BMSCs). Because mitophagy is critical in removing damaged or surplus mitochondrial fragments and maintaining mitochondrial integrity, the present study was undertaken to test the hypothesis that mitophagy is involved in mitochondrial fission-enhanced stemness of BMSCs. Primary cultures of rat BMSCs were treated with tyrphostin A9 (TA9, a potent inducer of mitochondrial fission) to increase mitochondrial fission, which was accompanied by enhanced mitophagy as defined by increased co-staining of MitoTracker Green for mitochondria and LysoTracker Deep Red for lysosomes, as well as the increased co-localization of autophagy markers (LC3B, P62) and mitochondrial marker (Tom20). A mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to promote mitophagy, which was confirmed by an increased co-localization of mitochondrial and lysosome biomarkers. The argumentation of mitophagy was associated with enhanced stemness of BMSCs as defined by increased expression of stemness markers Oct4 and Sox2, and enhanced induction of BMSCs to adipocytes or osteocytes. Conversely, transfection of BMSCs with siRNA targeting mitophagy-essential genes Pink1/Prkn led to diminished stemness of the stem cells, as defined by depressed stemness markers. Importantly, concomitant promotion of mitochondrial fission and inhibition of mitophagy suppressed the stemness of BMSCs. These results thus demonstrate that mitophagy is critically involved in mitochondrial fission promotion of the stemness of BMSCs.  相似文献   

4.
A rapid and efficient method to stimulate bone regeneration would be useful in orthopaedic stem cell therapies. Rolipram is an inhibitor of phosphodiesterase 4 (PDE4), which mediates cyclic adenosine monophosphate (cAMP) degradation. Systemic injection of rolipram enhances osteogenesis induced by bone morphogenetic protein 2 (BMP-2) in mice. However, there is little data on the precise mechanism, by which the PDE4 inhibitor regulates osteoblast gene expression. In this study, we investigated the combined ability of BMP-2 and cilomilast, a second-generation PDE4 inhibitor, to enhance the osteoblastic differentiation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity of MSCs treated with PDE4 inhibitor (cilomilast or rolipram), BMP-2, and/or H89 was compared with the ALP activity of MSCs differentiated only by osteogenic medium (OM). Moreover, expression of Runx2, osterix, and osteocalcin was quantified using real-time polymerase chain reaction (RT-PCR). It was found that cilomilast enhances the osteoblastic differentiation of MSCs equally well as rolipram in primary cultured MSCs. Moreover, according to the H89 inhibition experiments, Smad pathway was found to be an important signal transduction pathway in mediating the osteogenic effect of BMP-2, and this effect is intensified by an increase in cAMP levels induced by PDE4 inhibitor.  相似文献   

5.
6.
We performed this study to investigate the effects of recombinant human bone sialoprotein (BSP) on the proliferation and osteodifferentiation of human BMSCs(hBMSCs). The hBMSC cultures were divided into 4 groups: control group, 10−10 M BSP group (BSP group), osteogenic medium group (10 nM dexamethasone, 10 mM β-glycerophosphate, and 50 mg/L ascorbic acid, OM group) and BSP + OM group (OM plus10−10 M BSP). Compared with the control group, cell growth of the other three groups slowed down, while fluorescence at the G0/G1 phase increased. After 28 days, in the OM group and the BSP + OM group, the proportion of STRO-1-positive cells decreased by 22.7% and 38.4% and ALP activity increased by 50% and 71.43%, respectively. CD271 mRNA expression decreased while Cbfa1, osteocalcin and osterix mRNA levels increased in the OM and BSP + OM groups, and the mRNA level change was greater in the BSP + OM group. After 28 days, the number of nodules in the BSP + OM group was 112.5% more than that in the OM group, but nodules did not formed in the control or BSP group. We conclude that BSP is capable of inhibiting hBMSCs proliferation and enhancing their osteogenic differentiation and mineralization in the presence of OM.  相似文献   

7.
Concern regarding safety with respect to the clinical use of human bone morphogenetic protein-2 (BMP-2) has become an increasingly controversial topic. The role of BMP-2 in carcinogenesis is of particular concern. Although there have been many studies of this topic, the results have been contradictory and confusing. We conducted a systematic review of articles that are relevant to the relationship or effect of BMP-2 on all types of tumors and a total of 97 articles were included. Studies reported in these articles were classified into three major types: “expression studies”, “in vitro studies”, and “in vivo studies”. An obvious pattern was that those works that hypothesize an inhibitory effect for BMP-2 most often examined only the proliferative properties of the tumor cells. This subset of studies also contained an extraordinary number of contradictory findings which made drawing a reliable general conclusion impossible. In general, we support a pro-tumorigenesis role for BMP-2 based on the data from these in vitro cell studies and in vivo animal studies, however, more clinical studies should be carried out to help make a firm conclusion.  相似文献   

8.
Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF) through suppression of AKT and ERK signaling.  相似文献   

9.
Kakudo N  Kusumoto K  Wang YB  Iguchi Y  Ogawa Y 《Life sciences》2006,79(19):1847-1855
When recombinant human bone morphogenetic protein-2 (rhBMP-2) is implanted in soft tissues, bony tissue is induced during the course of endochondral ossification. The relationship between endochondral ossification and vascularization is important in bone formation, and vascular endothelial growth factor (VEGF) is considered to play an important role in this process. In this study, the immunohistological localization of VEGF was investigated in rhBMP-2-induced ectopic endochondral ossification in the calf muscle of rats. In addition, the characteristics of anti-VEGF antibody-reactive cells were histologically investigated using electron microscopy to examine the cause of endochondral ossification induced by recombinant human bone morphogenetic protein-2. The role of VEGF in rhBMP-2-induced osteoinduction and vascular induction was studied by observing the relationship between the localizations of anti-VEGF antibody-reactive cells and vascularization. During the process of rhBMP-2-induced ectopic endochondral ossification, fibroblast-like cells, which were located at the margin of the implant and reactive to BMP-2 at 5 days, were positive for VEGF immunostaining. Hypertrophic chondrocytes appeared 9 days and osteoblasts appeared 14 to 21 days after implantation, and all these cells were reactive with anti-VEGF antibody. Bony trabeculae subsequently appeared in the muscle, and new blood vessels were formed alongside the trabeculae. When VEGF was added to rhBMP, more new blood vessels and bone were formed in the induced bone. These findings suggested that rhBMP-2 induced the differentiation of undifferentiated mesenchymal cells to chondrocytes and osteoblasts, and these differentiated cells expressed VEGF, creating an advantageous environment for vascularization in bony tissue.  相似文献   

10.

Background

Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs.

Results

Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo-differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling.

Conclusions

Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.  相似文献   

11.
In this study, heparin-conjugated poly(l-lactide-co-glycolide) (PLGA) nanospheres (HCPNs) suspended in fibrin gel (group 1) were developed for a long-term delivery of BMP-2, and then used to address the hypothesis that a long-term delivery of BMP-2 would enhance ectopic bone formation compared to a short-term delivery at an equivalent dose. Fibrin gel containing normal PLGA nanospheres (group 2) was used for short-term delivery of BMP-2. The in vitro release of BMP-2 from group 1 was sustained for 4 weeks with no initial burst release. In contrast, 83% of BMP-2 loaded in group 2 was released only for the first 3 days. BMP-2 released from group 1 stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 9 days in vitro. In contrast, BMP-2 released from group 2 induced a transient increase in ALP activity for the first 5 days and a decrease thereafter. Importantly, group 1 induced bone formation to a much greater extent than did group 2, with 2.0-fold greater bone formation area and 3.5-fold greater calcium content, upon implantation into rat hind limb muscle. These results show that long-term delivery of BMP-2 enhances in vivo osteogenic efficacy of the protein compared to short-term delivery at an equivalent dose.  相似文献   

12.
13.
14.
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.  相似文献   

15.
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2.  相似文献   

16.
Thanks to the advantages of easy harvesting and escape from immune rejection, autologous bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for immunosuppressive therapy against inflammation and autoimmune diseases. However, the therapy is still challenging because the immunomodulatory properties of BMSCs are always impaired by immunopathogenesis in patients. Because of its reliable and extensive biological activities, osthole has received increased clinical attention. In this study, we found that BMSCs derived from osteoporosis donors were ineffective in cell therapy for experimental inflammatory colitis and osteoporosis. In vivo and in vitro tests showed that because of the down-regulation of Fas and FasL expression, the ability of osteoporotic BMSCs to induce T-cell apoptosis decreased. Through the application of osthole, we successfully restored the immunosuppressive ability of osteoporotic BMSCs and improved their treatment efficacy in experimental inflammatory colitis and osteoporosis. In addition, we found the immunomodulatory properties of BMSCs were enhanced after osthole pre-treatment. In this study, our data highlight a new approach of pharmacological modification (ie osthole) to improve the immune regulatory performance of BMSCs from a healthy or inflammatory microenvironment. The development of targeted strategies to enhance immunosuppressive therapy using BMSCs may be significantly improved by these findings.  相似文献   

17.
Adipose stem cells (ASCs) have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. In this study, ASCs were harvested from normal Sprague–Dawley (SD) rats and transfected by BMP-2 gene before they were loaded on alginate. The ability of bone regeneration was determined in rat critical-size cranial defects. An 8-mm diameter defect was created in the calvarias of 36 rats; these rats were divided into three groups. In experimental group, the defects were filled with alginate gel combined with BMP-2 transfected ASCs; in negative control group, the defects were filled with alginate gel mixed with normal ASCs; in blank controls, the defects were filled with cell-free alginate gel. Four rats of each group were killed and the cranial defect sites were observed at 4, 8 and 16 weeks after surgery. There was complete repair of cranial defects in experimental group using the alginate gel loading BMP-2 transfected ASC, but only partial repair in negative controls and in the blank control. The engineering approach combining BMP-2 enhanced ASCs with alginate gel can therefore stimulate bone regeneration and repair for the large size bone defects.  相似文献   

18.
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.  相似文献   

19.
20.
骨髓间充质干细胞无血清培养   总被引:1,自引:0,他引:1  
吴伟  周燕  谭文松 《生物工程学报》2009,25(1):0121-0128
为建立一种化学成分明确的、能用于体外扩增骨髓间充质干细胞的无血清培养基, 且骨髓间充质干细胞经无血清培养扩增后仍能保持其多向分化的潜能。采用密度梯度离心结合贴壁法从1月龄新西兰大白兔股骨中分离骨髓间充质干细胞, 比较在含10%胎牛血清的培养基(SCM)和自制的化学成分明确的无血清培养基(CDSFM)中骨髓间充质干细胞的形态、增殖能力, 以及扩增后的骨髓间充质干细胞的细胞周期、集落形成能力和成骨、成脂肪分化能力。经过10 d的培养, 骨髓间充质干细胞在自制的无血清培养基中扩增了50倍, 在含10%胎牛血清的培养基中扩增了40倍。在无血清和有血清培养基中扩增后的细胞中G0/G1期比例分别为(80.31%±0.6%)和(75.24%±4.0%), 两者无显著差异(P>0.05)。无血清培养扩增后的骨髓间充质干细胞集落形成率(12.7%±4.0%)低于有血清培养组(28.7%±4.2%), 两者比较差异显著(P<0.01)。经过无血清培养扩增的骨髓间充质干细胞在成骨、成脂肪诱导分化培养基中能够分化成成骨和脂肪细胞。自制的化学成分明确的无血清培养基能够在体外培养扩增骨髓间充质干细胞, 并且维持其干细胞特性, 可以用于细胞治疗以及生物医学研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号