首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.  相似文献   

2.
《Autophagy》2013,9(2):284-285
  相似文献   

3.
The interplay between H2S and nitric oxide (NO) is thought to contribute to renal functions. The current study was designed to assess the role of NO in mediating the renoprotective effects of hydrogen sulfide in the 5/6 nephrectomy (5/6 Nx) animal model. Forty rats were randomly assigned to 5 experimental groups: (a) Sham; (b) 5/6 Nx; (c) 5/6Nx+sodium hydrosulfide-a donor of H 2S, (5/6Nx+sodium hydrosulfide [NaHS]); (d) 5/6Nx+NaHS+ L -NAME (a nonspecific nitric oxide synthase [NOS] inhibitor); (e) 5/6Nx+NaHS+aminoguanidine (a selective inhibitor of inducible NOS [iNOS]). Twelve weeks after 5/6 Nx, we assessed the expressions of iNOS and endothelial NOS (eNOS), oxidative/antioxidant status, renal fibrosis, urine N-acetyl-b-glucosaminidase (NAG) activity as the markers of kidney injury and various markers of apoptosis, inflammation, remodeling, and autophagy. NaHS treatment protected the animals against chronic kidney injury as depicted by improved oxidative/antioxidant status, reduced apoptosis, and autophagy and attenuated messenger RNA (mRNA) expression of genes associated with inflammation, remodeling, and NAG activity. Eight weeks Nω-nitro-l-arginine methyl ester ( L -NAME) administration reduced the protective effects of hydrogen sulfide. In contrast, aminoguanidine augmented the beneficial effects of hydrogen sulfide. Our finding revealed some fascinating interactions between NO and H 2S in the kidney. Moreover, the study suggests that NO, in an isoform-dependent manner, can exert renoprotective effects in 5/6 Nx model of CKD.  相似文献   

4.
The production of reactive species contributes to the age-dependent accumulation of dysfunctional mitochondria and protein aggregates, all of which are associated with neurodegeneration. A putative mediator of these effects is the lipid peroxidation product 4-hydroxynonenal (4-HNE), which has been shown to inhibit mitochondrial function, and accumulate in the postmortem brains of patients with neurodegenerative diseases. This deterioration in mitochondrial quality could be due to direct effects on mitochondrial proteins, or through perturbation of the macroautophagy/autophagy pathway, which plays an essential role in removing damaged mitochondria. Here, we use a click chemistry-based approach to demonstrate that alkyne-4-HNE can adduct to specific mitochondrial and autophagy-related proteins. Furthermore, we found that at lower concentrations (5–10 μM), 4-HNE activates autophagy, whereas at higher concentrations (15 μM), autophagic flux is inhibited, correlating with the modification of key autophagy proteins at higher concentrations of alkyne-4-HNE. Increasing concentrations of 4-HNE also cause mitochondrial dysfunction by targeting complex V (the ATP synthase) in the electron transport chain, and induce significant changes in mitochondrial fission and fusion protein levels, which results in alterations to mitochondrial network length. Finally, inhibition of autophagy initiation using 3-methyladenine (3MA) also results in a significant decrease in mitochondrial function and network length. These data show that both the mitochondria and autophagy are critical targets of 4-HNE, and that the proteins targeted by 4-HNE may change based on its concentration, persistently driving cellular dysfunction.  相似文献   

5.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

6.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

7.
Contrast-induced acute kidney injury (CI-AKI) is the common hospitalized acute kidney injury (AKI). However, the diagnosis by serum creatinine might not be early enough. Currently, the roles of circulating mitochondria in CI-AKI are still unclear. Since early detection is crucial for treatment, the association between circulating mitochondrial function and CI-AKI was tested as a potential biomarker for detection of CI-AKI. Twenty patients with chronic kidney disease (CKD) undergoing percutaneous coronary intervention (PCI) were enrolled. Blood and urine samples were obtained at the time of PCI, and 6, 24, 48 and 72 h after PCI. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) were measured. Oxidative stress, inflammation, mitochondrial function, mitochondrial dynamics and cell death were determined from peripheral blood mononuclear cells. Forty percent of patients developed AKI. Plasma NGAL levels increased after 24 h after receiving contrast media. Cellular and mitochondrial oxidative stress, mitochondrial dysfunction and decreased mitochondrial fusion occurred at 6 h following contrast media exposure. Subgroup of AKI had higher %necroptosis cells and TNF-α mRNA expression than subgroup without AKI. Collectively, circulating mitochondrial dysfunction could be an early predictive biomarker for CI-AKI in CKD patients receiving contrast media. These findings provide novel strategies to prevent CI-AKI according to its pathophysiology.  相似文献   

8.
We investigated the effects of dietary iron deficiency on the redox system in the heart. Dietary iron deficiency increased heart weight and accumulation of carbonylated proteins. However, expression levels of heme oxygenase-1 and LC3-II, an antioxidant enzyme and an autophagic marker, respectively, in iron-deficient mice were upregulated compared to the control group, resulting in a surrogate phenomenon against oxidative stress.  相似文献   

9.
10.
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health concerns with increasing rates in morbidity and mortality. Transition from AKI-to-CKD is common and requires awareness in the management of AKI survivors. AKI-to-CKD transition is a main risk factor for the development of cardiovascular disease and progression to end-stage kidney disease. The mechanisms driving AKI-to-CKD transition are being explored to identify potential molecular and cellular targets for renoprotective drug interventions. Endoplasmic reticulum (ER) stress and autophagy are involved in the process of AKI-to-CKD transition. Excessive ER stress results in the persistent activation of unfolded protein response, which is an underneath cause of kidney cell death. Moreover, ER stress modulates autophagy and vice-versa. Autophagy is a degradation defensive mechanism protecting cells from malfunction. However, the underlying pathological mechanism involved in this interplay in the context of AKI-to-CKD transition is still unclear. In this review, we discuss the crosstalk between ER stress and autophagy in AKI, AKI-to-CKD transition, and CKD progression. In addition, we explore possible therapeutic targets that can regulate ER stress and autophagy to prevent AKI-to-CKD transition to improve the long-term prognosis of AKI survivors.  相似文献   

11.
Tobacco smoking is one of the most important risk factors for chronic obstructive pulmonary disease (COPD). However, the most critical genes and proteins remain poorly understood. Therefore, we aimed to investigate these hub genes and proteins in tobacco smoke-induced COPD, together with the potential mechanism(s). Differentially expressed genes (DEGs) were analysed between smokers and patients with COPD. mRNA expression and protein expression of IP3R were confirmed in patients with COPD and extracted smoke solution (ESS)-treated human bronchial epithelial (HBE) cells. Moreover, expression of oxidative stress, inflammatory cytokines and/or autophagy-related protein was tested when IP3R was silenced or overexpressed in ESS-treated and/or 3-MA-treated cells. A total of 30 DEGs were obtained between patients with COPD and smoker samples. IP3R was identified as one of the key targets in tobacco smoke-induced COPD. In addition, IP3R was significantly decreased in patients with COPD and ESS-treated cells. Loss of IP3R statistically increased expression of oxidative stress and inflammatory cytokines in ESS-treated HBE cells, and overexpression of IP3R reversed the above functions. Furthermore, the autophagy-related proteins (Atg5, LC3 and Beclin1) were statistically decreased, and p62 was increased by silencing of IP3R cells, while overexpression of IP3R showed contrary results. Additionally, we detected that administration of 3-MA significantly reversed the protective effects of IP3R overexpression on ESS-induced oxidative stress and inflammatory injury. Our results suggest that IP3R might exert a protective role against ESS-induced oxidative stress and inflammation damage in HBE cells. These protective effects might be associated with promoting autophagy.  相似文献   

12.
13.
14.
Acute kidney injury (AKI) is a major kidney disease associated with poor clinical outcomes. Oxidative stress is predominantly involved in the pathogenesis of AKI. Autophagy and the Keap1-Nrf2 signalling pathway are both involved in the oxidative-stress response. However, the cross talk between these two pathways in AKI remains unknown. Here, we found that autophagy is upregulated during cisplatin-induced AKI. In contrast with previous studies, we observed a marked increase in p62. We also found that p62 knockdown reduces autophagosome formation and the expression of LC3II. To explore the cross talk between p62 and the Keap1-Nrf2 signalling pathway, HK-2 cells were transfected with siRNA targeting Nrf2, and we found that Nrf2 knockdown significantly reduced cisplatin-induced p62 expression. Moreover, p62 knockdown significantly decreased the protein expression of Nrf2, as well as Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1), whereas the expression of kelch-like ECH-associated protein 1 (Keap1) was upregulated. These results indicate that p62 creates a positive feedback loop in the Keap1-Nrf2 signalling pathway. Finally, we examined the role of p62 in cell protection during cisplatin-induced oxidative stress, and we found that p62 silencing in HK-2 cells increases apoptosis and reactive oxygen species (ROS) levels, which further indicates the protective role of p62 under oxidative stress and suggests that the cytoprotection 62 mediated is in part by regulating autophagic activity or the Keap1-Nrf2 signalling pathway. Taken together, our results have demonstrated a reciprocal regulation of p62, autophagy and the Keap1-Nrf2 signalling pathway under oxidative stress, which may be a potential therapeutic target against AKI.  相似文献   

15.
Alzheimer''s disease (AD) is the most common cause of mental dementia in the aged population. AD is characterized by the progressive decline of memory and multiple cognitive functions, and changes in behavior and personality. Recent research has revealed age‐dependent increased levels of VDAC1 in postmortem AD brains and cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal interaction between VDAC1 and P‐Tau in the AD brains, leading to mitochondrial structural and functional defects. Our current study aimed to understand the impact of a partial reduction of voltage‐dependent anion channel 1 (VDAC1) protein on mitophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in transgenic TAU mice in Alzheimer''s disease. To determine if a partial reduction of VDAC1 reduces mitochondrial and synaptic toxicities in transgenic Tau (P301L) mice, we crossed heterozygote VDAC1 knockout (VDAC1+/−) mice with TAU mice and generated double mutant (VDAC1+/−/TAU) mice. We assessed phenotypic behavior, protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial reduction of VDAC1 rescued the TAU‐induced behavioral impairments such as motor coordination and exploratory behavioral changes, and learning and spatial memory impairments in VDAC1+/−/TAU mice. Protein levels of mitophagy, autophagy, and synaptic proteins were significantly increased in double mutant mice compared with TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial number was significantly reduced, and mitochondrial length was increased in double mutant mice. Based on these observations, we conclude that reduced VDAC1 is beneficial in symptomatic‐transgenic TAU mice.  相似文献   

16.
In a previous report, we characterized several oxidative stress parameters during the course of amyloid beta (Abeta) peptide/Fe2+-induced apoptotic death in neuronal cells. In extending these findings, we now report a marked decrease in protein kinase C (PKC) isoforms, reduced Akt serine/threonine kinase activity, Bcl 2-associated death promoter (BAD) phosphorylation and enhanced p38 mitogen-activated protein kinase (MAPK) and caspase-9 and -3 activation, 12 h after addition of both 5 micro m Abeta and 5 micro m Fe2+. These activities reminiscent for a pro-apoptotic cellular course were blocked in the presence of the iron chelator deferroxamine. Abeta alone, increased PKC isoform levels between three- and four-fold after 12 h, enhanced Akt activity approximately eight-fold and Ser136 BAD phosphorylation two-fold, suggesting that by itself is not toxic. Fe2+ alone transiently enhanced p38 MAPK and caspase-9 and -3 enzymes indicative for cell damage, but was not sufficient to cause cell death as previously indicated. GF, a PKC inhibitor or wortmannin, a blocker of the Akt pathway enhanced Abeta/Fe2+-induced toxicity, while SB, a p38 MAPK inhibitor, prevented cell damage and apoptosis. These findings further support the hypothesis that metal ion chelation and inhibitors of pro-apoptotic kinase cascades may be beneficial for Alzheimer's disease therapy.  相似文献   

17.
18.
19.
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer''s disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6''‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic Celegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod3, gst4, daf16, bec1 and lgg1, while down‐regulate the mRNA expression of daf2 and daf15 in Aβ1‐42 transgenic Celegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of Celegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.  相似文献   

20.
Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号