首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨TLR9激动剂对疟疾体液免疫记忆的影响,用非致死型约氏疟原虫感染BALB/c小鼠,感染前2 d注射TLR9激动剂CpGl826,90 d后进行二次感染。薄血膜染色法观察红细胞感染率,流式细胞术检测脾细胞悬液中记忆性和活化性B细胞百分比,双夹心ELISA法检测特异性抗体水平。结果显示,二次感染前,TLR9激动剂处理鼠记忆性和活化性B细胞以及抗体水平略高于对照组;二次感染后,其再感染发生率和虫血症水平均略低于对照组;活化性B细胞和抗体以及记忆性B细胞也分别于二次感染后1 d和3 d出现了有意义的升高,且升高幅度均略高于对照组。表明TLR9激动剂对约氏疟原虫感染后体液免疫记忆的建立和维持有一定促进作用。  相似文献   

2.
Toll-like receptor 9 (TLR9) agonists such as unmethylated bacterial CpG DNAs activate B lymphocytes directly, potentially influencing their function and homeostasis. To assess B-cell responsiveness to TLR9 agonists in human immunodeficiency virus (HIV) disease, we examined the ability of naive and memory B cells to proliferation and to increase surface expression of CD80 in response to CpG oligonucleotides (ODN). CpG ODN induced expression of CD80 similarly in B cells from HIV-infected persons and from healthy controls. In contrast, proliferation responses to CpG ODN were markedly impaired in both naive and memory B-cell subsets from HIV-infected persons. Naive B-cell proliferation defects were related to plasma HIV RNA and, among memory B cells, to the frequencies of CD21-negative cells. Importantly, TLR9 mRNA levels were significantly diminished in freshly prepared naive B cells and especially so in memory B cells from HIV-positive viremic donors, suggesting a possible underlying mechanism for the observed functional impairments. Dose-response studies indicated that optimal induction of CD80 expression was achieved with much lower concentrations of CpG ODN than optimal induction of proliferation. We propose that the relatively low threshold of activation that is required for CD80 induction by CpG ODN might explain the preservation of this response in B cells from HIV-infected persons despite diminished TLR9 expression. Impaired responsiveness to TLR9 agonists may contribute to defects in humoral immunity in HIV infection.  相似文献   

3.
Circulating human IgM expressing memory B cells have been incompletely characterized. Here, we compared the phenotype and in vitro functional response (capacity to proliferate and differentiate to antibody secreting cells) in response to CpG and a cytokine cocktail (IL-2, IL-6, and IL-10) of sorted naïve B cells, IgM memory B cells and isotype-switched circulating memory B cells. Compared to naïve B cells, IgM memory B cells had lower integrated mean fluorescence intensity (iMFI) of BAFF-R, CD38, CD73, and IL-21R, but higher iMFI of CD95, CD11c, TLR9, PD-1, and CD122. Compared to switched memory B cells, IgM memory B cells had higher iMFI of BAFF-R, PD-1, IL-21R, TLR9, and CD122, but lower iMFI of CD38, CD95, and CD73. Four days after receiving the CpG/cytokine cocktail, higher frequencies of IgM than switched memory B cells—and these in turn greater than naïve cells—proliferated and differentiated to antibody secreting cells. At this time point, a small percentage (median of 7.6%) of stimulated IgM memory B cells changed isotype to IgG. Thus, among the heterogeneous population of human circulating IgM memory B cells a subset is capable of a rapid functional response to a CpG/cytokine stimulus in vitro.  相似文献   

4.
Memory B cells can persist for a lifetime and be reactivated to yield high affinity, isotype switched plasma cells. The generation of memory B cells by Ag immunization requires adjuvants that generally contain TLR agonists. However, requirements for memory B cell activation and the role of TLRs in this activation are not well understood. In this study, we analyzed the response of memory B cells from immunized mice to TLR9 and 4 agonists CpG oligodeoxynucleotides (ODN) and LPS. Mouse memory B cells express both TLR9 and 4, and respond to both CpG ODN and LPS in vitro by differentiating into high affinity IgG secreting plasma cells. In contrast, neither CpG ODN nor LPS alone is sufficient to activate memory B cells in vivo. Ag is required for the clonal expansion of Ag-specific memory B cells, the differentiation of memory B cells to high affinity IgG secreting plasma cells, and the recall of high affinity Ab responses. The Ag-specific B cells that have not yet undergone isotype switching showed a relatively higher expression of TLR4 than memory B cells, which was reflected in a heightened response to LPS, but in both cases yielded mostly low affinity IgM secreting plasma cells. Thus, although memory B cells are sensitive to TLR agonists in vitro, TLR agonists alone appear to have little affect on B cell memory in vivo.  相似文献   

5.
The receptor TLR9, recognizing unmethylated bacterial DNA (CpG), is expressed by B cells and plays a role in the maintenance of serological memory. Little is known about the response of B cells stimulated with CpG alone, without additional cytokines. In this study, we show for the first time the phenotypic modification, changes in gene expression, and functional events downstream to TLR9 stimulation in human B cell subsets. In addition, we demonstrate that upon CpG stimulation, IgM memory B cells differentiate into plasma cells producing IgM Abs directed against the capsular polysaccharides of Streptococcus pneumoniae. This novel finding proves that IgM memory is the B cell compartment responsible for the defense against encapsulated bacteria. We also show that cord blood transitional B cells, corresponding to new bone marrow emigrants, respond to CpG. Upon TLR9 engagement, they de novo express AID and Blimp-1, genes necessary for hypersomatic mutation, class-switch recombination, and plasma cell differentiation and produce Abs with anti-pneumococcal specificity. Transitional B cells, isolated from cord blood, have not been exposed to pneumococcus in vivo. In addition, it is known that Ag binding through the BCR causes apoptotic cell death at this stage of development. Therefore, the ability of transitional B cells to sense bacterial DNA through TLR9 represents a tool to rapidly build up the repertoire of natural Abs necessary for our first-line defense at birth.  相似文献   

6.
Common variable immune deficiency (CVID) is a primary immune deficiency characterized by low levels of serum immune globulins, lack of Ab, and reduced numbers of CD27+ memory B cells. Although T, B, and dendritic cell defects have been described, for the great majority, genetic causes have not been identified. In these experiments, we investigated B cell and plasmacytoid dendritic cell activation induced via TLR9, an intracellular recognition receptor that detects DNA-containing CpG motifs from viruses and bacteria. CpG-DNA activates normal B cells by the constitutively expressed TLR9, resulting in cytokine secretion, IgG class switch, immune globulin production, and potentially, the preservation of long-lived memory B cells. We found that CpG-DNA did not up-regulate expression of CD86 on CVID B cells, even when costimulated by the BCR, or induce production of IL-6 or IL-10 as it does for normal B cells. TLR9, found intracytoplasmically and on the surface of oligodeoxynucleotide-activated normal B cells, was deficient in CVID B cells, as was TLR9 mRNA. TLR9 B cell defects were not related to proportions of CD27+ memory B cells. CpG-activated CVID plasmacytoid dendritic cells did not produce IFN-alpha in normal amounts, even though these cells contained abundant intracytoplasmic TLR9. No mutations or polymorphisms of TLR9 were found. These data show that there are broad TLR9 activation defects in CVID which would prevent CpG-DNA-initiated innate immune responses; these defects may lead to impaired responses of plasmacytoid dendritic cells and loss of B cell function.  相似文献   

7.
Proteolytic modification of pattern recognition receptors and their signaling adaptor molecules has recently emerged as an essential cellular event to regulate immune and inflammatory responses. Here we show that the TIR domain containing adaptor-inducing interferon-β (TRIF), an adaptor molecule mediating TLR3 signaling and MyD88-independent signaling of TLR4, plays an inhibitory role in TLR5-elicited responses by inducing proteolytic degradation of TLR5. TRIF overexpression in human embryonic kidney (HEK293) and human colonic epithelial (NCM460) cells abolishes the cellular protein level of TLR5, whereas it does not alter TLR5 mRNA level. Thus, TRIF overexpression dramatically suppresses flagellin/TLR5-deriven NFκB activation in NCM460 cells. TRIF-induced TLR5 protein degradation is completely inhibited in the presence of pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), whereas several specific inhibitors against cathepsin B, reactive oxygen species, or ubiquitin-mediated proteasome activity fail to suppress this degradation. These results indicate that TRIF-induced caspase activity causes TLR5 protein degradation. In addition, we identify that the C terminus of TRIF and extracellular domain of TLR5 are required for TRIF-induced TLR5 degradation. Furthermore, TRIF-induced proteolytic degradation is extended to TLR3, TLR6, TLR7, TLR8, TLR9, and TLR10, whereas the cellular level of TLR1, TLR2, and TLR4 is not affected by TRIF overexpression. These results suggest that, in addition to mediating TLR3- or TLR4-induced signaling as an adaptor molecule, TRIF can participate in proteolytic modification of certain members of TLRs to modulate the functionality of TLRs at post-translational level. Collectively, our findings propose a potential inhibitory role of TRIF at least in regulating host-microbial communication via TLR5 in colonic epithelial cells.  相似文献   

8.

There is limited information regarding the TLR2 signaling pathway involved in Th9 cell differentiation. The role of calcitriol in regulating TLR2-mediated Th9 cell development is unknown. Thus, we aimed to unravel the TLR2 signaling pathway in Th9 cells and its regulation by calcitriol. We have used n?=?5–6 animals for each murine experiment. Human studies involved five healthy volunteers. Moreover, ten healthy individuals and ten RA patients were included in the study. Murine and human Th9 cells were treated with Calcitriol (100 nM) and Pam3CSK4 (2 µg/mL). The number of IL-9+ve cells was determined by flow cytometry. Real-time PCR was used to assess the gene expression. Serum 25(OH)D3 levels were determined by HPLC. We observed that TLR2 signals via IL-33/ST2 in Th9 cells. Increased TLR2 expression associated with increased IL9 expression and augmented disease severity in RA patients. Calcitriol attenuated TLR2 signaling in murine and human Th9 cells. Low serum vitamin D3 level negatively associated with increased IL-9 and TLR2 expression and disease severity in RA patients. Our data suggest a potential role of calcitriol to ameliorate the disease severity of RA patients.

  相似文献   

9.
10.
B lymphocytes express multiple TLRs that regulate their cytokine production. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG‐ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.  相似文献   

11.
The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.  相似文献   

12.
Infection of human B cells with Epstein-Barr virus (EBV) induces polyclonal activation in almost all infected cells, but a small proportion of infected cells are transformed to immortalized lymphoblastoid cell lines. Since B cells are activated also by CD40 ligand (CD40L) and Toll-like receptor (TLR) agonists via a similar signaling pathway, it is likely that costimulation through these molecules could result in synergistic enhancement of the transformation efficiency of EBV. In this study, the stimulatory effect of TLR7/8 (R848), TLR9 (CpG) agonists and/or CD40L on transformation efficiency of EBV in normal human B cells was assessed using the limiting dilution assay. Costimulation of peripheral blood mononuclear cells (PBMCs) with CpG and R848, but not CD40L, increased significantly the frequency of EBV transformed B cells (p < 0.001). Neither synergistic nor additive effects were observed between TLR agonists and CD40L and also TLR7/8 and TLR9 agonists. Costimulation with R848, CpG and CD40L enhanced the proliferative response of B cells infected with EBV. This effect was more evident when enriched B cells were employed, compared to PBMCs. The promoting effect of TLR agonists stimulation, implies that EBV may take advantage of the genes induced by the TLR stimulation pathway for viral latency and oncogenesis.  相似文献   

13.
This study was undertaken to gain better insights into the role of TLRs and MyD88 in the development and differentiation of memory B cells, especially of ASC, during the Th2 polarized memory response induced by Natterins. Our in vivo findings demonstrated that the anaphylactic IgG1 production is dependent on TLR2 and MyD88 signaling, and that TLR4 acts as adjuvant accelerating the synthesis of high affinity-IgE. Also, TLR4 (MyD88-independent) modulated the migration of innate-like B cells (B1a and B2) out of the peritoneal cavity, and the emigration from the spleen of B1b and B2 cells. TLR4 (MyD88-independent) modulated the emigration from the spleen of Bmem as well as ASC B220pos. TLR2 triggered to the egress from the peritoneum of Bmem (MyD88-dependent) and ASC B220pos (MyD88-independent). We showed that TLR4 regulates the degree of expansion of Bmem in the peritoneum (MyD88-dependent) and in BM (MyD88-independent) as well as of ASC B220neg in the spleen (MyD88-independent). TLR2 regulated the intensity of the expansion of Bmem (MyD88-independent) and ASC B220pos (MyD88-dependent) in BM. Finally, TLR4 signals sustained the longevity of ASC B220pos (MyD88-independent) and ASC B220neg into the peritoneum (MyD88-dependent) and TLR2 MyD88-dependent signaling supported the persistence of B2 cells in BM, Bmem in the spleen and ASC B220neg in peritoneum and BM. Terminally differentiated ASC B220neg required the cooperation of both signals through TLR2/TLR4 via MyD88 for longevity in peritoneum, whereas Bmem required only TLR2/MyD88 to stay in spleen, and ASC B220pos rested in peritoneum dependent on TLR4 signaling. Our data sustain that earlier events on memory B cells differentiation induced in secondary immune response against Natterins, after secondary lymph organs influx and egress, may be the key to determining peripheral localization of innate-like B cells and memory B cells as ASC B220pos and ASC B220neg.  相似文献   

14.
Viruses and other microorganisms express specific pathogen‐associated molecular patterns that are recognized by cell surface or endosome‐associated Toll‐like receptors (TLR). There are many examples of viruses that have developed strategies to modulate TLR signaling through the use of viral or cellular molecules. Epstein–Barr virus (EBV) has recently been found to display a complex interaction with TLR. The aim of this study was to asses the effect of EBV infection on proliferative capacity of TLR7/8 and 9 agonist and CD40 ligand (CD40L) in normal B lymphocytes. Our results demonstrate that EBV induces a significant inhibition in proliferative response to TLR7/8 (P < 0.004) and TLR9 (P < 0.000) agonists but not to CD40L stimulation in enriched human normal B lymphocytes. Similar inhibitory effect was also observed in B lymphocytes prestimulated with the TLR agonists, implying that the suppressive effect is not due to downregulation of TLR protein expression by EBV. EBV infection did not induce apoptosis and did not downregulate TLR7/8 mRNA expression in B lymphocytes. Our results suggest that EBV might be able to evade the immune system by modulation of the TLR signaling pathway.  相似文献   

15.
Thymoquinone (TQ) derived from the nutraceutical black cumin oil has been reported to be a novel agonist of Neu4 sialidase activity in live cells (Glycoconj J DOI 10.1007/s10719-010-9281-6). The activation of Neu4 sialidase on the cell surface by TQ was found to involve GPCR-signaling via membrane targeting of Gαi subunit proteins and matrix metalloproteinase-9 activation. Contrary to other reports, TQ had no anti-inflammatory effects in vitro. Here, we show that MyD88/TLR4 complex formation and subsequent NFκB activation are induced by the Neu4 activity associated with TQ-stimulated live primary bone marrow (BM) macrophage cells from WT and Neu1-deficient mice, HEK-TLR4/MD2 cells and BMC-2 macrophage cell line but not with primary macrophage cells from Neu4-knockout mice. Tamiflu (oseltamivir phosphate), pertussis toxin (PTX), a specific inhibitor of Gαi proteins of G-protein coupled receptor (GPCR) and the broad range inhibitor of matrix metalloproteinase (MMP) galardin applied to live primary BM macrophage cells completely block TQ-induced MyD88/TLR4 complex formation. Using immunocytochemistry and western blot analyses, Tamiflu, galardin and PTX inhibit NFκB activation induced by Neu4 activity associated with TQ-stimulated BMC-2 cells, HEK-TLR4/MD2 cells and primary BM macrophages from WT mice. EMSA analyses on HEK-TLR4/MD2 nuclear cell extracts confirm the nuclear localization and DNA binding of TQ-induced NFκB activation in a biphasic manner within 30 min. Co-immunoprecipitation experiments reveal for the first time that MMP-9 may be an important intermediate link in the TQ-induced Neu4 activity circuitously targeting TLR4 receptors. Central to this process is that Neu4 forms a complex with MMP-9, which is already bound to TLR4 receptors. Fluorescence spectrophotometer analyses of live CD14-THP1 cells treated with TQ show Neu4 sialidase activity over 5 min. Using flow cytometry analyses, CD14-THP1 cells treated with TQ express stable protein levels of Neu4, TLR4 and MMP9 on the cell surface over 30 min except for a marked diminution of MMP9 at 15 min. Using cytokine array profiling analyses of serum, Neu4-knockout mice respond poorly to TQ in producing pro-inflammatory cytokines and chemokines after 5-h treatment compared to the wild-type or hypomorphic cathepsin A mice with a secondary 90% Neu1 deficient mice. Our findings establish an unprecedented signaling paradigm for TQ-induced Neu4 sialidase activity. It signifies that MMP-9 forms an important molecular signaling platform in complex with TLR4 receptors at the ectodomain and acts as the intermediate link for TQ-induced Neu4 sialidase in generating a functional receptor with subsequent NFκB activation and pro-inflammatory cytokine production in vivo.  相似文献   

16.
17.
Detailed information of human B cell activation via TLR may lead to a better understanding of B cell involvement in autoimmunity and malignancy. In this study we identified a fundamental difference in the regulation of TLR7- and TLR9-mediated B cell stimulation: whereas the induction of polyclonal naive B cell proliferation by the TLR7 ligands resiquimod (R848) and loxoribine required the presence of plasmacytoid dendritic cells (PDCs), activation via the TLR9 ligand CpG was independent of PDCs. We found that PDC-derived type I IFN enhanced TLR7 sensitivity of B cells by selectively up-regulating TLR7 expression. In contrast the expression levels of TLR9 and of other TLRs studied remained unchanged. In the presence of type I IFN, TLR7 ligation triggered polyclonal B cell expansion and B cell differentiation toward Ig-producing plasma cells; notably, this occurred independently of T cell help and B cell Ag. Human B cells did not respond to ligands of other TLRs including TLR2, TLR4 and TLR6 with and without type I IFN. In conclusion, our results reveal a distinct regulation of TLR7 and TLR9 function in human B cells and highlight TLR7 and TLR9 as unique targets for therapeutic intervention in B cell-mediated immunity and disease.  相似文献   

18.

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with a break in self-tolerance reflected by a production of antinuclear autoantibodies. Since autoantibody production can be activated via nucleic acid Toll-like receptor 9 (TLR9), the respective pathway has been implicated in the development of SLE and pathogenic B cell responses. However, the response of B cells from SLE patients to TLR9 stimulation remains incompletely characterized.

Methods

In the current study, the response of B cells from SLE patients and healthy donors upon TLR9 stimulation was analyzed in terms of proliferation and cytokine production and correlated with the lupus disease activity and anti-dsDNA titers.

Results

B cells from SLE patients showed a reduced response to TLR9 agonist compared to B cells from healthy donors in terms of proliferation and activation. B cells from SLE patients with higher disease activity produced less interleukin (IL)-6, IL-10, vascular endothelial growth factor, and IL-1ra than B cells from healthy donors. Further analyses revealed an inverse correlation of cytokines produced by TLR9-stimulated B cells with lupus disease activity and anti-dsDNA titer, respectively.

Conclusion

The capacity of B cells from lupus patients to produce cytokines upon TLR9 engagement becomes less efficient with increasing disease activity, suggesting that they either enter an exhausted state or become tolerant to TLR stimulation for cytokine production when disease worsens.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0477-1) contains supplementary material, which is available to authorized users.  相似文献   

19.
Toll-like receptors (TLRs) 3, 7, 8, and 9 are localized to intracellular compartments where they encounter foreign or self nucleic acids and activate innate and adaptive immune responses. The endoplasmic reticulum (ER)-resident membrane protein, UNC93B1, is essential for intracellular trafficking and endolysosomal targeting of TLR7 and TLR9. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, but little is known about its localization or function. In this study, we demonstrate that TLR8 localized to the early endosome and the ER but not to the late endosome or lysosome in human monocytes and HeLa transfectants. UNC93B1 physically associated with human TLR8, similar to TLRs 3, 7, and 9, and played a critical role in TLR8-mediated signaling. Localization analyses of TLR8 tail-truncated mutants revealed that the transmembrane domain and the Toll/interleukin-1 receptor domain were required for proper targeting of TLR8 to the early endosome. Hence, although UNC93B1 participates in intracellular trafficking and signaling for all nucleotide-sensing TLRs, the mode of regulation of TLR localization differs for each TLR.  相似文献   

20.
B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR), receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R) and the innate receptor, Toll-like receptor 9 (TLR9). However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF) and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs), ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1) is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号