首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The Atg8/LC3/GABARAP family of proteins, a group that has structural homology with ubiquitin, connects with a large set of binding partners to function in macroautophagy (hereafter autophagy). This interaction occurs primarily via a conserved motif termed the LC3-interacting region (LIR), or the Atg8-interacting motif (AIM). The consensus sequence for this motif, [W/F/Y]xx[L/I/V], can be found in many proteins, but only some of them are physiological partners containing a functional LIR/AIM. Because the structure of many full-length partners has not been, or cannot be, solved, the structural context of the LIR/AIM within the native protein conformation is not obvious. Here we suggest that the functional LIR/AIM is a short linear motif (SLiM) protein-binding module, arising from an intrinsically disordered region. This finding enables the rapid elimination of some false Atg8/LC3/GABARAP-binding proteins, and connects the exponentially growing knowledge on disordered SLiMs with autophagy.  相似文献   

2.
Several autophagy proteins contain an LC3‐interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B‐positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP‐ALFY‐LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR‐binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.  相似文献   

3.
The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.  相似文献   

4.
ABSTRACT

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.

Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5  相似文献   

5.
Through the canonical LC3 interaction motif (LIR), [W/F/Y]‐X1‐X2‐[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a I nteraction 相似文献   

6.
Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood.We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic.Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.  相似文献   

7.
Selective autophagy requires the specific segregation of targeted proteins into autophagosomes. The selectivity is mediated by autophagy receptors, such as p62 and NBR1, which can bind to autophagic effector proteins (Atg8 in yeast, MAP1LC3 protein family in mammals) anchored in the membrane of autophagosomes. Recognition of autophagy receptors by autophagy effectors takes place through an LC3 interaction region (LIR). The canonical LIR motif consists of a WXXL sequence, N-terminally preceded by negatively charged residues. The LIR motif of NBR1 presents differences to this classical LIR motif with a tyrosine residue and an isoleucine residue substituting the tryptophan residue and the leucine residue, respectively. We have determined the structure of the GABARAPL-1/NBR1-LIR complex and studied the influence of the different residues belonging to the LIR motif for the interaction with several mammalian autophagy modifiers (LC3B and GABARAPL-1). Our results indicate that the presence of a tryptophan residue in the LIR motif increases the binding affinity. Substitution by other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation. This indicates that different LIRs can interact with autophagy modifiers with unique binding properties.  相似文献   

8.
Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3‐interacting region (LIR) at the C‐terminus of the protein and a novel motif at the N‐terminus. Although both sites are important for Atg4–Atg8 interaction in vivo, only the new N‐terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE‐bound Atg8.  相似文献   

9.
FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general.  相似文献   

10.
11.
Justin Joachim 《Autophagy》2017,13(12):2113-2114
Yeast have one Atg8 protein; however, multiple Atg8 orthologs (LC3s and GABARAPs) are found in humans. We discovered that a population of the Atg8 ortholog GABARAP resides on the centrosome and the peri-centrosomal region. This centrosomal pool of GABARAP translocates to forming autophagosomes upon starvation to activate autophagosome formation in a non-hierarchical pathway. How this centrosome-to-phagophore delivery of GABARAP occurs was not understood. To address this, we have shown that the archetypal centriolar satellite protein PCM1 regulates recruitment of GABARAP to the centrosome. PCM1 recruits GABARAP, but not MAP1LC3B, directly to centriolar satellites through a LC3-interacting region (LIR) motif. Furthermore, PCM1, in concert with its interacting centriolar satellite E3 ligase MIB1, controls GABARAP stability, K48-linked ubiquitination and GABARAP-mediated autophagic flux.  相似文献   

12.
Macroautophagy allows for bulk degradation of cytosolic components in lysosomes. Overexpression of GFP/RFP-LC3/GABARAP is commonly used to monitor autophagosomes, a hallmark of autophagy, despite artifacts related to their overexpression. Here, we developed new sensors that detect endogenous LC3/GABARAP proteins at the autophagosome using an LC3-interacting region (LIR) and a short hydrophobic domain (HyD). Among HyD-LIR-GFP sensors harboring LIR motifs of 34 known LC3-binding proteins, HyD-LIR(TP)-GFP using the LIR motif from TP53INP2 allowed detection of all LC3/GABARAPs-positive autophagosomes. However, HyD-LIR(TP)-GFP preferentially localized to GABARAP/GABARAPL1-positive autophagosomes in a LIR-dependent manner. In contrast, HyD-LIR(Fy)-GFP using the LIR motif from FYCO1 specifically detected LC3A/B-positive autophagosomes. HyD-LIR(TP)-GFP and HyD-LIR(Fy)-GFP efficiently localized to autophagosomes in the presence of endogenous LC3/GABARAP levels and without affecting autophagic flux. Both sensors also efficiently localized to MitoTracker-positive damaged mitochondria upon mitophagy induction. HyD-LIR(TP)-GFP allowed live-imaging of dynamic autophagosomes upon autophagy induction. These novel autophagosome sensors can thus be widely used in autophagy research.  相似文献   

13.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

14.
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.  相似文献   

15.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   

16.
The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.  相似文献   

17.
18.
ABSTRACT

Autophagy is a conserved adaptive cellular pathway essential to maintain a variety of physiological functions. Core components of this machinery are the six human Atg8 orthologs that initiate formation of appropriate protein complexes. While these proteins are routinely used as indicators of autophagic flux, it is presently not possible to discern their individual biological functions due to our inability to predict specific binding partners. In our attempts towards determining downstream effector functions, we developed a computational pipeline to define structural determinants of human Atg8 family members that dictate functional diversity. We found a clear evolutionary separation between human LC3 and GABARAP subfamilies and also defined a novel sequence motif responsible for their specificity. By analyzing known protein structures, we observed that functional modules or microclusters reveal a pattern of intramolecular network, including distinct hydrogen bonding of key residues (F52/Y49; a subset of HP2) that may directly modulate their interaction preferences. Multiple molecular dynamics simulations were performed to characterize how these proteins interact with a common protein binding partner, PLEKHM1. Our analysis showed remarkable differences in binding modes via intrinsic protein dynamics, with PLEKHM1-bound GABARAP complexes showing less fluctuations and higher number of contacts. We further mapped 373 genomic variations and demonstrated that distinct cancer-related mutations are likely to lead to significant structural changes. Our findings present a quantitative framework to establish factors underlying exquisite specificity of human Atg8 proteins, and thus facilitate the design of precise modulators.

Abbreviations: Atg: autophagy-related; ECs: evolutionary constraints; GABARAP: GABA type A receptor-associated protein; HsAtg8: human Atg8; HP: hydrophobic pocket; KBTBD6: kelch repeat and BTB domain containing 6; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MD: molecular dynamics; HIV-1 Nef: human immunodeficiency virus type 1 negative regulatory factor; PLEKHM1: pleckstrin homology and RUN domain containing M1; RMSD: root mean square deviation; SQSTM1/p62: sequestosome 1; WDFY3/ALFY: WD repeat and FYVE domain containing 3  相似文献   

19.
Members of the LC3/GABARAP family of ubiquitin‐like proteins function during autophagy by serving as membrane linked protein‐binding platforms. Their C‐termini are physically attached to membranes through covalent linkage to primary amines on lipids such as phosphatidylethanolamine, while their ubiquitin‐like fold domains bind “LIR” (LC3‐Interacting Region) sequences found within an extraordinarily diverse array of proteins including regulators of autophagy, adaptors that recruit ubiquitinated cargoes to be degraded, and even proteins controlling processes at membranes that are not associated with autophagy. Recently, LC3/GABARAP proteins were found to bind the ubiquitin E3 ligase NEDD4 to influence ubiquitination associated with autophagy in human cell lines. Here, we use purified recombinant proteins to define LC3B interactions with a specific LIR sequence from NEDD4, present a crystal structure showing atomic details of the interaction, and show that LC3B‐binding can steer intrinsic NEDD4 E3 ligase activity. The data provide detailed molecular insights underlying recruitment of an E3 ubiquitin ligase to phagophores during autophagy.  相似文献   

20.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号