共查询到20条相似文献,搜索用时 0 毫秒
1.
Huiwen Song Jun Pu Lin Wang Lihua Wu Jianmin Xiao Qigong Liu Jun Chen Min Zhang Yang Liu Mingke Ni Jinggang Mo Yunliang Zheng Deli Wan XiongJiu Cai Yaping Cao Weiyi Xiao Lei Ye Enyuan Tu Zhihai Lin Jianxin Wen Xiaoling Lu Jian He Yi Peng Jing Su Heng Zhang Yongxiang Zhao Meihua Lin Zhiyong Zhang 《Autophagy》2015,11(8):1308-1325
Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction. 相似文献
2.
3.
4.
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC. 相似文献
5.
6.
《Acta Crystallographica. Section F, Structural Biology Communications》2017,73(10):560-567
ATG16L1 plays a major role in autophagy. It acts as a molecular scaffold which mediates protein–protein interactions essential for autophagosome formation. The ATG12~ATG5–ATG16L1 complex is one of the key complexes involved in autophagosome formation. Human ATG16L1 comprises 607 amino acids with three functional domains named ATG5BD, CCD and WD40, where the C‐terminal WD40 domain represents approximately 50% of the full‐length protein. Previously, structures of the C‐terminal WD40 domain of human ATG16L1 as well as of human ATG12~ATG5 in complex with the ATG5BD of ATG16L1 have been reported. However, apart from the ATG5BD, no structural information for the N‐terminal half, including the CCD, of human ATG16L1 is available. In this study, the authors aimed to structurally characterize the N‐terminal half of ATG16L1. ATG16L111–307 in complex with ATG5 has been purified and crystallized in two crystal forms. However, both crystal structures revealed degradation of ATG16L1, resulting in crystals comprising only full‐length ATG5 and the ATG5BD of ATG16L1. The structures of ATG5–ATG5BD in two novel crystal forms are presented, further supporting the previously observed dimerization of ATG5–ATG16L1. The reported degradation points towards a high instability at the linker region between the ATG5BD and the CCD in ATG16L1. Based on this observation and further biochemical analysis of ATG16L1, a stable 236‐amino‐acid subfragment comprising residues 72–307 of the N‐terminal half of ATG16L1, covering the residual, so far structurally uncharacterized region of human ATG16L1, was identified. Here, the identification, purification, biochemical characterization and crystallization of the proteolytically stable ATG16L172–307 subfragment are reported. 相似文献
7.
Autophagy is a tightly regulated lysosome-mediated catabolic process in eukaryotes that maintains cellular homeostasis. A distinguishable feature of autophagy is the formation of double-membrane structures, autophagosome, which envelopes the intracellular cargoes and finally degrades them by fusion with lysosomes. So far, many structures of Atg proteins working on the autophagosome formation have been reported, however those involved in autophagosome maturation, a fusion with lysosome, are relatively unknown. One of the molecules in autophagosome maturation, TECPR1, has been identified and recently, structural studies on both ATG5-TECPR1 and ATG5-ATG16L1 complexes revealed that TECPR1 and ATG16L1 share the same binding site on ATG5. These results, in combination with supporting biochemical and cellular biological data, provide an insight into a model for swapping ATG5 partners for autophagosome maturation. [BMB Reports 2015; 48(3): 129-130] 相似文献
8.
9.
Bo Wang Rekha Iyengar Xiujie Li-Harms Joung Hyuck Joo Christopher Wright Alfonso Lavado 《Autophagy》2018,14(5):796-811
Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway. 相似文献
10.
The NLR (nucleotide-binding domain leucine-rich repeat containing) proteins serve as regulators of inflammatory signaling pathways. NLRX1, a mitochondria-localized NLR protein, has been previously shown to negatively regulate inflammatory cytokine production activated via the MAVS-DDX58 (RIG-I) pathway. The literature also indicates that DDX58 has a negative impact upon autophagy. Consistent with the inhibitory role of NLRX1 on DDX58, our recent study indicates a role of NLRX1 in augmenting virus-induced autophagy. This effect is through its interaction with another mitochondrial protein TUFM (Tu translation elongation factor, mitochondrial, also known as EF-TuMT, COXPD4, and P43). TUFM also reduces DDX58-activated cytokines but augments autophagy. Additionally it interacts with ATG12–ATG5-ATG16L1 to form a molecular complex that modulates autophagy. The work shows that both NLRX1 and TUFM work in concert to reduce cytokine response and augment autophagy. 相似文献
11.
Xin Wen 《Autophagy》2020,16(2):193-194
ABSTRACTXenophagy, a unique type of selective macroautophagy/autophagy, targets invading pathogens as part of the host immune response. In order to survive within the host, bacteria have established various self-defense mechanisms. In a recent paper from Feng Shao’s lab, the Salmonella effector protein SopF has been demonstrated to block xenophagy by interrupting the vacuolar type H+-translocating (v-) ATPase-ATG16L1 axis, which is important for antibacterial autophagy initiation. SopF can specifically ADP-ribosylate Gln124 on ATP6V0C, a v-ATPase component, thus influencing recruitment of ATG16L1 onto the bacteria-containing vacuole within the host cytosol.Abbreviations: ATG: autophagy-related; S. Typhimurium: Salmonella enterica serovar Typhimurium; T3SS: type III secretion system 相似文献
12.
The membrane source for autophagosome biogenesis is an unsolved mystery in the study of autophagy. ATG16L1 forms a complex with ATG12–ATG5 (the ATG16L1 complex). The ATG16L1 complex is recruited to autophagic membranes to convert MAP1LC3B-I to MAP1LC3B-II. The ATG16L1 complex dissociates from the phagophore before autophagosome membrane closure. Thus, ATG16L1 can be used as an early event marker for the study of autophagosome biogenesis. We found that among 3 proteins in the ATG16L1 complex, only ATG16L1 formed puncta-like structures when transiently overexpressed. ATG16L1+ puncta formed by transient expression could represent autophagic membrane structures. We thoroughly characterized the transiently expressed ATG16L1 in several mammalian cell lines. We found that transient expression of ATG16L1 not only inhibited autophagosome biogenesis, but also aberrantly targeted RAB11-positive recycling endosomes, resulting in recycling endosome aggregates. We conclude that transient expression of ATG16L1 is not a physiological model for the study of autophagy. Caution is warranted when reviewing findings derived from a transient expression model of ATG16L1. 相似文献
13.
《Bioorganic & medicinal chemistry》2020,28(19):115681
Autophagy is postulated to be required by cancer cells to survive periods of metabolic and/or hypoxic stress. ATG7 is the E1 enzyme that is required for activation of Ubl conjugation pathways involved in autophagosome formation. This article describes the design and optimization of pyrazolopyrimidine sulfamate compounds as potent and selective inhibitors of ATG7. Cellular levels of the autophagy markers, LC3B and NBR1, are regulated following treatment with these compounds. 相似文献
14.
Takanobu Jotatsu Shigehiro Yagishita Ken Tajima Fumiyuki Takahashi Kaoru Mogushi Moulid Hidayat Aditya Wirawan Ryo Ko Ryota Kanemaru Naoko Shimada Keiko Mitani Tsuyoshi Saito Kazuya Takamochi Kenji Suzuki Shinji Kohsaka Shinya Kojima Hiroshi Mukae Kazuhiro Yatera Kazuhisa Takahashi 《Biochemistry and Biophysics Reports》2017
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor characterized by rapid progression. The mechanisms that lead to a shift from initial therapeutic sensitivity to ultimate therapeutic resistance are poorly understood. Although the SCLC genomic landscape led to the discovery of promising agents targeting genetic alterations that were already under investigation, results have been disappointing. Achievements in targeted therapeutics have not been observed for over 30 years. Therefore, the underlying disease biology and novel targets urgently require a better understanding. Epigenetic regulation is deeply involved in the cellular plasticity that could shift tumor cells to the malignant phenotype. We have focused on a histone modifier, LSD1, that is overexpressed in SCLC and is a potent therapeutic target. Interestingly, the LSD1 splice variant LSD1+8a, the expression of which has been reported to be restricted to neural tissue, was detected and was involved in the expression of neuroendocrine marker genes in SCLC cell lines. Cells with high expression of LSD1+8a were resistant to CDDP and LSD1 inhibitor. Moreover, suppression of LSD1+8a inhibited cell proliferation, indicating that LSD1+8a could play a critical role in SCLC. These findings suggest that LSD1+8a should be considered a novel therapeutic target in SCLC. 相似文献
15.
Natalie Spang Anne Feldmann Heike Huesmann Fazilet Bekbulat Verena Schmitt Christof Hiebel Ingrid Koziollek-Drechsler Albrecht M Clement Bernd Moosmann Jennifer Jung Christian Behrends Ivan Dikic Andreas Kern Christian Behl 《Autophagy》2014,10(12):2297-2309
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network. 相似文献
16.
《Autophagy》2013,9(12):2297-2309
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network. 相似文献
17.
David R. Soto-Pantoja Thomas W. Miller Michael L. Pendrak William G. DeGraff Camille Sullivan Lisa A. Ridnour Mones Abu-Asab David A. Wink Maria Tsokos David D. Roberts 《Autophagy》2012,8(11):1628-1642
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury. 相似文献
18.
《Autophagy》2013,9(11):1628-1642
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury. 相似文献
19.
Although many biological functions of MAPK1/ERK2-MAPK3/ERK1 (mitogen-activated protein kinase 1/3) have been reported, a direct effect of MAPK1/3 on hepatic lipid metabolism remains largely unknown. We recently showed that activation of MAPK1/3 ameliorates liver steatosis in LEPR (leptin receptor)-deficient (db/db) mice, a classic animal model for liver steatosis. Consistent with these results, knockdown of MAPK1/3 promotes liver steatosis in C57/B6J wild-type (WT) mice. Autophagic flux and ATG7 (autophagy related 7) levels are increased by MAPK1/3 activation or decreased by MAPK1/3 knockdown in livers and primary hepatocytes. Blockade of autophagic flux by chloroquine (CQ) or ATG7 knockdown reverses the ameliorated liver steatosis in MAPK1/3-activated db/db mice. Together, these findings identify a beneficial role for MAPK1/3 in liver steatosis that is mediated by ATG7-dependent autophagy, which provides novel insights into the mechanisms underlying liver steatosis and create a rationale for targeting MAPK1/3 in the treatment of liver steatosis. 相似文献
20.
The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes
下载免费PDF全文

Elise Jacquin Talitha Veith Noor Gammoh Julia M Arasteh Ulrike Mayer Simon R Carding Thomas Wileman Rupert Beale Oliver Florey 《The EMBO journal》2018,37(4)
A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double‐membrane phagophore, which is driven by the ATG16L1/ATG5‐ATG12 complex. In contrast, non‐canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3‐associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non‐canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat‐containing C‐terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non‐canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non‐canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD. Further, we demonstrate activation of non‐canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non‐canonical use of autophagy machinery. 相似文献