首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cyclic hypoxia and alterations in oncogenic signaling contribute to switch cancer cell metabolism from oxidative phosphorylation to aerobic glycolysis. A major consequence of up-regulated glycolysis is the increased production of metabolic acids responsible for the presence of acidic areas within solid tumors. Tumor acidosis is an important determinant of tumor progression and tumor pH regulation is being investigated as a therapeutic target. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, currently considered an important survival mechanism in cancer cells under metabolic stress or subjected to chemotherapy. We investigated the response of human melanoma cells cultured in acidic conditions in terms of survival and autophagy regulation. Melanoma cells exposed to acidic culture conditions (7.0 < pH < 6.2) promptly accumulated LC3+ autophagic vesicles. Immunoblot analysis showed a consistent increase of LC3-II in acidic culture conditions as compared with cells at normal pH. Inhibition of lysosomal acidification by bafilomycin A1 further increased LC3-II accumulation, suggesting an active autophagic flux in cells under acidic stress. Acute exposure to acidic stress induced rapid inhibition of the mammalian target of rapamycin signaling pathway detected by decreased phosphorylation of p70S6K and increased phosphorylation of AMP-activated protein kinase, associated with decreased ATP content and reduced glucose and leucine uptake. Inhibition of autophagy by knockdown of the autophagic gene ATG5 consistently reduced melanoma cell survival in low pH conditions. These observations indicate that induction of autophagy may represent an adaptation mechanism for cancer cells exposed to an acidic environment. Our data strengthen the validity of therapeutic strategies targeting tumor pH regulation and autophagy in progressive malignancies.  相似文献   

3.
Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma.  相似文献   

4.
5.
Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation‐induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non‐diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho‐mammalian target of rapamycin, p62 and reduced expression of phospho‐AMP‐activated protein kinase and lysosomal membrane‐associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase‐3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.  相似文献   

6.
Metformin activates both PRKA and SIRT1. Furthermore, autophagy is induced by either the PRKA-MTOR-ULK1 or SIRT1-FOXO signaling pathways. We aimed to elucidate the mechanism by which metformin alleviates hepatosteatosis by examining the molecular interplay between SIRT1, PRKA, and autophagy. ob/ob mice were divided into 3 groups: one with ad libitum feeding of a standard chow diet, one with 300 mg/kg intraperitoneal metformin injections, and one with 3 g/d caloric restriction (CR) for a period of 4 wk. Primary hepatocytes or HepG2 cells were treated with oleic acid (OA) plus high glucose in the absence or presence of metformin. Both CR and metformin significantly improved body weight and glucose homeostasis, along with hepatic steatosis, in ob/ob mice. Furthermore, CR and metformin both upregulated SIRT1 expression and also stimulated autophagy induction and flux in vivo. Metformin also prevented OA with high glucose-induced suppression of both SIRT1 expression and SIRT1-dependent activation of autophagy machinery, thereby alleviating intracellular lipid accumulation in vitro. Interestingly, metformin treatment upregulated SIRT1 expression and activated PRKA even after siRNA-mediated knockdown of PRKAA1/2 and SIRT1, respectively. Taken together, these results suggest that metformin alleviates hepatic steatosis through PRKA-independent, SIRT1-mediated effects on the autophagy machinery.  相似文献   

7.
《Autophagy》2013,9(1):46-59
Metformin activates both PRKA and SIRT1. Furthermore, autophagy is induced by either the PRKA-MTOR-ULK1 or SIRT1-FOXO signaling pathways. We aimed to elucidate the mechanism by which metformin alleviates hepatosteatosis by examining the molecular interplay between SIRT1, PRKA, and autophagy. ob/ob mice were divided into 3 groups: one with ad libitum feeding of a standard chow diet, one with 300 mg/kg intraperitoneal metformin injections, and one with 3 g/d caloric restriction (CR) for a period of 4 wk. Primary hepatocytes or HepG2 cells were treated with oleic acid (OA) plus high glucose in the absence or presence of metformin. Both CR and metformin significantly improved body weight and glucose homeostasis, along with hepatic steatosis, in ob/ob mice. Furthermore, CR and metformin both upregulated SIRT1 expression and also stimulated autophagy induction and flux in vivo. Metformin also prevented OA with high glucose-induced suppression of both SIRT1 expression and SIRT1-dependent activation of autophagy machinery, thereby alleviating intracellular lipid accumulation in vitro. Interestingly, metformin treatment upregulated SIRT1 expression and activated PRKA even after siRNA-mediated knockdown of PRKAA1/2 and SIRT1, respectively. Taken together, these results suggest that metformin alleviates hepatic steatosis through PRKA-independent, SIRT1-mediated effects on the autophagy machinery.  相似文献   

8.
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T‐type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3‐II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).  相似文献   

9.
10.
Metformin is the most widely used antidiabetic drug that belongs to the biguanide class. It is very well tolerated and has the major clinical advantage of not inducing hypoglycemia. Metformin decreases hepatic glucose production via a mechanism requiring liver kinase B1, which controls the metabolic checkpoint, AMP‐activated protein kinase‐mammalian target of rapamycin and neoglucogenic genes. The effects of metformin on this pathway results in reduced protein synthesis and cell proliferation. These observations have given the impetus for many investigations on the role of metformin in the regulation of tumor cell proliferation, cell‐cycle regulation, apoptosis, and autophagy. Encouraging results from these studies have shown that metformin could potentially be used as an efficient anticancer drug in various neoplasms such as prostate, breast, lung, pancreas cancers, and melanoma. These findings are strengthened by retrospective epidemiological studies that have found a decrease in cancer risk in diabetic patients treated with metformin. In this review, we have focused our discussion on recent molecular mechanisms of metformin that have been described in various solid tumors in general and in melanoma in particular.  相似文献   

11.
12.
Proton pump inhibitors (PPI) target tumour acidic pH and have an antineoplastic effect in melanoma. The PPI esomeprazole (ESOM) kills melanoma cells through a caspase-dependent pathway involving cytosolic acidification and alkalinization of tumour pH. In this paper, we further investigated the mechanisms of ESOM-induced cell death in melanoma. ESOM rapidly induced accumulation of reactive oxygen species (ROS) through mitochondrial dysfunctions and involvement of NADPH oxidase. The ROS scavenger N-acetyl--cysteine (NAC) and inhibition of NADPH oxidase significantly reduced ESOM-induced cell death, consistent with inhibition of cytosolic acidification. Autophagy, a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, represents a defence mechanism in cancer cells under metabolic stress. ESOM induced the early accumulation of autophagosomes, at the same time reducing the autophagic flux, as observed by WB analysis of LC3-II accumulation and by fluorescence microscopy. Moreover, ESOM treatment decreased mammalian target of rapamycin signalling, as reduced phosphorylation of p70-S6K and 4-EBP1 was observed. Inhibition of autophagy by knockdown of Atg5 and Beclin-1 expression significantly increased ESOM cytotoxicity, suggesting a protective role for autophagy in ESOM-treated cells. The data presented suggest that autophagy represents an adaptive survival mechanism to overcome drug-induced cellular stress and cytotoxicity, including alteration of pH homeostasis mediated by proton pump inhibition.  相似文献   

13.
Autophagy modulation is a potential therapeutic strategy for breast cancer, and a previous study indicated that metformin exhibits significant anti-carcinogenic activity. However, the ability of metformin to induce autophagy and its role in breast cancer cell death remains unclear. In this study, we exposed MCF-7 cells to different concentrations of metformin (2.5, 5, and 10?mM) for 48?h, and metformin-induced significant apoptosis in the MCF-7 cells. The expression levels of CL-PARP (poly(ADP-ribose) polymerase 1) and the ratio of BAX to BCL-2 were significantly increased. In addition to apoptosis, we showed that metformin increased autophagic flux in MCF-7 cells, as evidenced by the upregulation of LC3-II and downregulation of P62/SQSTM1. Moreover, pharmacological or genetic blocking of autophagy increased metformin-induced apoptosis, indicating a cytoprotective role of autophagy in metformin-treated MCF-7 cells. Mechanistically, metformin-induced TFE3(Ser321) dephosphorylation activated TFE3 nuclear translocation and increased of TFE3 reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes and, subsequently, initiated autophagy in MCF-7 cells. Importantly, we found that metformin triggered the generation of reactive oxygen species (ROS) in MCF-7 cells. Furthermore, N-acetyl-l-cysteine (NAC), a ROS scavenger, abrogated the effects of metformin on TFE3-dependent autophagy. Notably, TFE3 expression positively correlated with breast cancer development and poor prognosis in patients. Taken together, these data demonstrate that blocking ROS-TFE3-dependent autophagy to enhance the activity of metformin warrants further attention as a treatment strategy for breast cancer.  相似文献   

14.
Lin SY  Li TY  Liu Q  Zhang C  Li X  Chen Y  Zhang SM  Lian G  Liu Q  Ruan K  Wang ZB  Zhang CS  Chien KY  Wu J  Li Q  Han J  Lin SC 《Autophagy》2012,8(9):1385-1386
Different from unicellular organisms, metazoan cells require the presence of extracellular growth factors to utilize environmental nutrients. However, the underlying mechanism was unclear. We have delineated a pathway, in which glycogen synthase kinase 3 (GSK3) in cells deprived of growth factors phosphorylates and activates the acetyltransferase KAT5/TIP60, which in turn stimulates the protein kinase ULK1 to elicit autophagy. Cells with the Kat5/Tip60 gene replaced with Kat5 (S86A) that cannot be phosphorylated by GSK3 are resistant to serum starvation-induced autophagy. Acetylation sites on ULK1 were mapped to K162 and K606, and the acetylation-defective mutant ULK1 (K162,606R) displays reduced kinase activity and fails to rescue autophagy in Ulk1 (-/-) mouse embryonic fibroblasts, indicating that acetylation is vital to the activation of ULK1. The GSK3-KAT5-ULK1 cascade seems to be specific for cells to sense growth factors, as KAT5 phosphorylation is not enhanced under glucose deprivation. Distinct from the glucose starvation-autophagy pathway that is conserved in all eukaryotic organisms, the growth factor deprivation response pathway is perhaps unique to metazoan organisms.  相似文献   

15.
Metformin is an insulin sensitizer molecule used for the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. It modulates the reproductive axis, affecting the release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). However, metformin's mechanism of action in pituitary gonadotropin-secreting cells remains unclear. Adenosine 5' monophosphate-activated protein kinase (PRKA) is involved in metformin action in various cell types. Here, we investigated the effects of metformin on gonadotropin secretion in response to activin and GnRH in primary rat pituitary cells (PRP), and studied PRKA in rat pituitary. In PRP, metformin (10 mM) reduced LH and follicle-stimulating hormone (FSH) secretion induced by GnRH (10(-8) M, 3 h), FSH secretion, and mRNA FSHbeta subunit expression induced by activin (10(-8) M, 12 or 24 h). The different subunits of PRKA are expressed in pituitary. In particular, PRKAA1 is detected mainly in gonadotrophs and thyrotrophs, is less abundant in lactotrophs and somatotrophs, and is undetectable in corticotrophs. In PRP, metformin increased phosphorylation of both PRKA and acetyl-CoA carboxylase. Metformin decreased activin-induced SMAD2 phosphorylation and GnRH-induced mitogen-activated protein kinase (MAPK) 3/1 (ERK1/2) phosphorylation. The PRKA inhibitor compound C abolished the effects of metformin on gonadotropin release induced by GnRH and on FSH secretion and Fshb mRNA induced by activin. The adenovirus-mediated production of dominant negative PRKA abolished the effects of metformin on the FSHbeta subunit mRNA and SMAD2 phosphorylation induced by activin and on the MAPK3/1 phosphorylation induced by GnRH. Thus, in rat pituitary cells, metformin decreases gonadotropin secretion and MAPK3/1 phosphorylation induced by GnRH and FSH release, FSHbeta subunit expression, and SMAD2 phosphorylation induced by activin through PRKA activation.  相似文献   

16.
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号