首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.  相似文献   

2.
Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1‐dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15‐dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age‐associated human diseases.  相似文献   

3.
Loss-of-function mutations in the genes encoding PRKN/parkin and PINK1 cause autosomal recessive Parkinson disease (PD). Seminal work in Drosophila revealed that loss of park/parkin and Pink1 causes prominent mitochondrial pathology in flight muscle and, to a lesser extent, in dopaminergic neurons. Subsequent studies in cultured mammalian cells discovered a crucial role for PRKN/PARK2 and PINK1 in selective macroautophagic removal of mitochondria (mitophagy). However, direct evidence for the existence of a PINK1-PRKN/PARK2-mediated mitophagy pathway in vivo is still scarce. Recently, we engineered Drosophila that express the mitophagy reporter mt-Keima. We demonstrated that mitophagy occurs in flight muscle cells and dopaminergic neurons in vivo and increases with aging. Moreover, this age-dependent rise depends on park and Pink1. Our data also suggested that some aspects of the mitochondrial phenotype of park- and Pink1-deficient flies are independent of the mitophagy defect, and that park and Pink1 may have multiple functions in the regulation of the integrity of these organelles. Here, we discuss implications of these findings as well as possible future applications of the mt-Keima fly model.  相似文献   

4.
The current research aimed to explore the possible relationship between PINK1/PARKIN-mediated mitophagy and the compression-induced senescence of nucleus pulposus cells (NPCs). Therefore, the stages of senescence in NPCs were measured under compression lasting 0, 24 and 48 hours. The mitophagy-related markers, autophagosomes and mitochondrial membrane potential were tested to determine the levels of PINK1/PARKIN-mediated mitophagy under compression. The PINK1 and PARKIN levels were also measured by immunohistochemistry of human and rat intervertebral disc (IVD) tissues taken at different degenerative stages. A specific mitophagy inhibitor, cyclosporine A (CSA) and a constructed PINK1-shRNA were used to explore the relationship between mitophagy and senescence by down-regulating the PINK1/PARKIN-mediated mitophagy levels. Our results indicated that compression significantly enhanced the senescence of NPCs in a time-dependent manner. Also, PINK1/PARKIN-mediated mitophagy was found to be activated by the extended duration of compression on NPCs as well as the increased degenerative stages of IVD tissues. After inhibition of PINK1/PARKIN-mediated mitophagy by CSA and PINK1-shRNA, the senescence of NPCs induced by compression was strongly rescued. Hence, the excessive degradation of mitochondria in NPCs by mitophagy under continuous compression may accelerate the senescence of NPCs. Regulating PINK1/PARKIN-mediated mitophagy might be a potential therapeutic treatment for IVD degeneration.  相似文献   

5.
《Autophagy》2013,9(11):1770-1779
Mitochondrial dysfunction is a hallmark of aging and numerous human diseases, including Parkinson disease (PD). Multiple homeostatic mechanisms exist to ensure mitochondrial integrity, including the selective autophagic program mitophagy, that is activated during starvation or in response to mitochondrial dysfunction. Following prolonged loss of potential across the inner mitochondrial membrane (ΔΨ), PTEN-induced putative kinase 1 (PINK1) and the E3-ubiquitin ligase PARK2 work in the same pathway to trigger mitophagy of dysfunctional mitochondria. Mutations in PINK1 and PARK2, as well as PARK7/DJ-1, underlie autosomal recessive Parkinsonism and impair mitochondrial function and morphology. In a genome-wide RNAi screen searching for genes that are required for PARK2 translocation to the mitochondria, we identified ATPase inhibitory factor 1 (ATPIF1/IF1) as essential for PARK2 recruitment and mitophagy in cultured cells. During uncoupling, ATPIF1 promotes collapse of ΔΨ and activation of the PINK-PARK2 mitophagy pathway by blocking the ATPase activity of the F1-Fo ATP synthase. Restoration of ATPIF1 in Rho0 cells, which lack mtDNA and a functional electron transport chain, lowers ΔΨ and triggers PARK2 recruitment. Our findings identified ATPIF1 and the ATP synthase as novel components of the PINK1-PARK2 mitophagy pathway and provide genetic evidence that loss of ΔΨ is an essential trigger for mitophagy.  相似文献   

6.
Alessandro Luciani 《Autophagy》2020,16(6):1159-1161
ABSTRACT

Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of metabolism due to the deficiency of mitochondrial MMUT (methylmalonyl-CoA mutase) – an enzyme that mediates the cellular breakdown of certain amino acids and lipids. The loss of MMUT leads to the accumulation of toxic organic acids causing severe organ dysfunctions and life-threatening complications. The mechanisms linking MMUT deficiency, mitochondrial alterations and cell toxicity remain uncharacterized. Using cell and animal-based models, we recently unveiled that MMUT deficiency impedes the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, thereby halting their delivery and subsequent degradation by macroautophagy/autophagy-lysosome systems. In turn, this defective mitophagy process instigates the accumulation of dysfunctional mitochondria that spark epithelial distress and tissue damage. Correction of PINK1-directed mitophagy defects or mitochondrial dysfunctions rescues epithelial distress in MMA cells and alleviates disease-relevant phenotypes in mmut?deficient zebrafish. Our findings suggest a link between primary MMUT deficiency and diseased mitochondria, mitophagy dysfunction and cell distress, offering potential therapeutic perspectives for MMA and other metabolic diseases.  相似文献   

7.
Induced pluripotent stem cells (iPSCs) have fewer and immature mitochondria than somatic cells and mainly rely on glycolysis for energy source. During somatic cell reprogramming, somatic mitochondria and other organelles get remodeled. However, events of organelle remodeling and interaction during somatic cell reprogramming have not been extensively explored. We show that both SKP/SKO (Sox2, Klf4, Pou5f1/Oct4) and SKPM/SKOM (SKP/SKO plus Myc/c-Myc) reprogramming lead to decreased mitochondrial mass but with different kinetics and by divergent pathways. Rapid, MYC/c-MYC-induced cell proliferation may function as the main driver of mitochondrial decrease in SKPM/SKOM reprogramming. In SKP/SKO reprogramming, however, mitochondrial mass initially increases and subsequently decreases via mitophagy. This mitophagy is dependent on the mitochondrial outer membrane receptor BNIP3L/NIX but not on mitochondrial membrane potential (ΔΨm) dissipation, and this SKP/SKO-induced mitophagy functions in an important role during the reprogramming process. Furthermore, endosome-related RAB5 is involved in mitophagosome formation in SKP/SKO reprogramming. These results reveal a novel role of mitophagy in reprogramming that entails the interaction between mitochondria, macroautophagy/autophagy and endosomes.  相似文献   

8.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

9.
Damaged or dysfunctional mitochondria are toxic to the cell by producing reactive oxygen species and releasing cell death factors. Therefore, timely removal of these organelles is critical to cellular homeostasis and viability. Mitophagy is the mechanism of selective degradation of mitochondria via autophagy. The significance of mitophagy in kidney diseases, including ischemic acute kidney injury (AKI), has yet to be established, and the involved pathway of mitophagy remains poorly understood. Here, we show that mitophagy is induced in renal proximal tubular cells in both in vitro and in vivo models of ischemic AKI. Mitophagy under these conditions is abrogated by Pink1 and Park2 deficiency, supporting a critical role of the PINK1-PARK2 pathway in tubular cell mitophagy. Moreover, ischemic AKI is aggravated in pink1 andpark2 single- as well as double-knockout mice. Mechanistically, Pink1 and Park2 deficiency enhances mitochondrial damage, reactive oxygen species production, and inflammatory response. Taken together, these results indicate that PINK1-PARK2-mediated mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function during AKI.  相似文献   

10.
Mesenchymal stem cells (MSCs) are a popular cell source for stem cell‐based therapy. However, continuous ex vivo expansion to acquire large amounts of MSCs for clinical study induces replicative senescence, causing decreased therapeutic efficacy in MSCs. To address this issue, we investigated the effect of melatonin on replicative senescence in MSCs. In senescent MSCs (late passage), replicative senescence decreased mitophagy by inhibiting mitofission, resulting in the augmentation of mitochondrial dysfunction. Treatment with melatonin rescued replicative senescence by enhancing mitophagy and mitochondrial function through upregulation of heat shock 70 kDa protein 1L (HSPA1L). More specifically, we found that melatonin‐induced HSPA1L binds to cellular prion protein (PrPC), resulting in the recruitment of PrPC into the mitochondria. The HSPA1L‐PrPC complex then binds to COX4IA, which is a mitochondrial complex IV protein, leading to an increase in mitochondrial membrane potential and anti‐oxidant enzyme activity. These protective effects were blocked by knockdown of HSPA1L. In a murine hindlimb ischemia model, melatonin‐treated senescent MSCs enhanced functional recovery by increasing blood flow perfusion, limb salvage, and neovascularization. This study, for the first time, suggests that melatonin protects MSCs against replicative senescence during ex vivo expansion for clinical application via mitochondrial quality control.  相似文献   

11.
Currently, there is limited understanding about hormonal regulation of mitochondrial turnover. Thyroid hormone (T3) increases oxidative phosphorylation (OXPHOS), which generates reactive oxygen species (ROS) that damage mitochondria. However, the mechanism for maintenance of mitochondrial activity and quality control by this hormone is not known. Here, we used both in vitro and in vivo hepatic cell models to demonstrate that induction of mitophagy by T3 is coupled to oxidative phosphorylation and ROS production. We show that T3 induction of ROS activates CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) mediated phosphorylation of PRKAA1/AMPK (5′ AMP-activated protein kinase), which in turn phosphorylates ULK1 (unc-51 like autophagy activating kinase 1) leading to its mitochondrial recruitment and initiation of mitophagy. Furthermore, loss of ULK1 in T3-treated cells impairs both mitophagy as well as OXPHOS without affecting T3 induced general autophagy/lipophagy. These findings demonstrate a novel ROS-AMPK-ULK1 mechanism that couples T3-induced mitochondrial turnover with activity, wherein mitophagy is necessary not only for removing damaged mitochondria but also for sustaining efficient OXPHOS.  相似文献   

12.
Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1‐Parkin dependent or independent. In contrast, downregulation of mitochondrial fission–fusion genes caused age‐dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult‐onset, neuronal downregulation of the fission–fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy‐independent mechanisms such as fission–fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging.  相似文献   

13.
Mitochondria serve as membrane sources and signaling platforms for regulating autophagy. Accumulating evidence has also shown that damaged mitochondria are removed through both selective mitophagy and general autophagy in response to mitochondrial and oxidative stresses. Protein ubiquitination through mitochondrial E3 ligases plays an integrative role in mitochondrial outer membrane protein degradation, mitochondrial dynamics, and mitophagy. Here we showed that MUL1, a mitochondria-localized E3 ligase, regulates selenite-induced mitophagy in an ATG5 and ULK1-dependent manner. ULK1 partially translocated to mitochondria after selenite treatment and interacted with MUL1. We also demonstrated that ULK1 is a novel substrate of MUL1. These results suggest the association of mitochondria with autophagy regulation and provide a new mechanism for the beneficial effects of selenium as a chemopreventive agent.  相似文献   

14.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

15.
Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.  相似文献   

16.
Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.  相似文献   

17.
The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 – Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP – LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.  相似文献   

18.
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPRmt) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.  相似文献   

19.
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact “coupling” of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the “coupling” across the double membrane for mitochondrial dynamics and quality control.  相似文献   

20.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号