首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages.  相似文献   

2.
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.  相似文献   

3.
Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.  相似文献   

4.
Chronic exposure to benzene is known to be associated with haematotoxicity and the development of aplastic anaemia and leukaemia. However, the mechanism underlying benzene‐induced haematotoxicity, especially at low concentrations of chronic benzene exposure has not been well‐elucidated. Here, we found that increased autophagy and decreased acetylation occurred in bone marrow mononuclear cells (BMMNCs) isolated from patients with chronic benzene exposure. We further showed in vitro that benzene metabolite, hydroquinone (HQ) could directly induce autophagy without apoptosis in BMMNCs and CD34+ cells. This was mediated by reduction in acetylation of autophagy components through inhibiting the activity of acetyltransferase, p300. Furthermore, elevation of p300 expression by Momordica Antiviral Protein 30 Kd (MAP30) or chloroquine reduced HQ‐induced autophagy. We further demonstrated that in vivo, MAP30 and chloroquine reversed benzene‐induced autophagy and haematotoxicity in a mouse model. Taken together, these findings highlight increased autophagy as a novel mechanism for benzene‐induced haematotoxicity and provide potential strategies to reverse this process for therapeutic benefits.  相似文献   

5.
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.  相似文献   

6.
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

7.
Prasad Tammineni 《Autophagy》2017,13(5):982-984
Macroautophagy/autophagy plays a key role in cellular quality control by eliminating protein aggregates and damaged organelles, which is essential for the maintenance of neuronal homeostasis. Defective autophagy has been implicated in the pathogenesis of Alzheimer disease (AD). In AD brains, autophagic vacuoles (AVs) accumulate massively within dystrophic neurites. This raises a fundamental question as to whether impaired autophagic clearance contributes to AD-associated autophagic stress. We recently revealed that AD neurons display defective retrograde transport and accumulation of amphisomes predominantly in axons and presynaptic terminals. Amyloid β (Aβ) oligomers are enriched in axons and interact with dynein motors. This interaction interferes with the coupling of the dynein motor with its adaptor SNAPIN. Such deficits disrupt dynein-driven retrograde transport of amphisomes, thus trapping them in distal axons and impairing their degradation in the soma. Therefore, our study provides new mechanistic insights into AD-linked autophagic pathology, and builds a foundation for developing potential AD therapeutic strategies by rescuing retrograde transport of amphisomes.  相似文献   

8.
《Autophagy》2013,9(11):2006-2020
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

9.
To ensure the safe use of nanoparticles (NPs) in modern society, it is necessary and urgent to assess the potential toxicity of NPs. Cardiovascular system is required for the systemic distribution of NPs entering circulation. Therefore, the adverse cardiovascular effects of NPs have gained extensive research interests. Metal based NPs, such as TiO2, ZnO and Ag NPs, are among the most popular NPs found in commercially available products. They may also have potential applications in biomedicine, which could increase their contact with cardiovascular systems. This review aimed at providing an overview about the adverse cardiovascular effects of TiO2, ZnO and Ag NPs. We discussed about the bio-distribution of NPs following different exposure routes. We also discussed about the cardiovascular toxicity of TiO2, ZnO and Ag NPs as assessed by in vivo and in vitro models. The possible mechanisms and contribution of physicochemical properties of metal based NPs were also discussed.  相似文献   

10.
The widespread use of combined anti-retroviral therapy (cART) has not decreased the prevalence of HIV-1-associated neurocognitive disorder (HAND), a type of neurodegenerative disease, even though cART effectively inhibits virus colonization in the central nervous system. Therefore, anti-retroviral agents cannot be fully excluded from the pathogenesis of HAND. Our previous study reported that long-term nucleoside analogue (NA) exposure induced mitochondrial toxicity in the cortical neurons of HAND patients and mice, but the exact mechanism of NA-associated neurotoxicity has remained unclear. Alteration of autophagy can result in protein aggregation and the accumulation of dysfunctional organelles, which are hallmarks of some neurodegenerative diseases. In this study, we first found increased autophagy in cortical autopsy specimens of AIDS patients. We then found that a low dose of NAs could stimulate autophagy in primary cultured neurons, while a high dose of NAs could induce only neuronal apoptosis. The level of NA-induced Bcl-2 and Bax expressions determined whether neuronal autophagy or apoptosis occurred. Furthermore, the level of NA-induced neuronal apoptosis correlated with the dysfunction of cellular DNA polymerase gamma. Damage-regulated autophagy modulator (DRAM) overexpression was also involved in NA-induced neuronal autophagy. p53 played a role in the regulation of NA-induced neuronal apoptosis, but its role in NA-associated neuronal autophagy was uncertain. Our results suggest that DRAM is involved in the regulation of NA-induced neuronal autophagy in a p53-independent manner. Further research is needed to investigate the underlying mechanism.  相似文献   

11.
Copper oxide nanoparticles induce autophagic cell death in a549 cells   总被引:1,自引:0,他引:1  
T Sun  Y Yan  Y Zhao  F Guo  C Jiang 《PloS one》2012,7(8):e43442
Metal oxide nanoparticles (NPs) are among the most highly produced nanomaterials, and have many diverse functions in catalysis, environmental remediation, as sensors, and in the production of personal care products. In this study, the toxicity of several widely used metal oxide NPs such as copper oxide, silica, titanium oxide and ferric oxide NPs, were evaluated In vitro. We exposed A549, H1650 and CNE-2Z cell lines to metal oxide NPs, and found CuO NPs to be the most toxic, SiO2 mild toxic, while the other metal oxide NPs had little effect on cell viability. Furthermore, the autophagic biomarker LC3-II significantly increased in A549 cells treated with CuO NPs, and the use of the autophagy inhibitors wortmannin and 3-methyladenin significantly improved cell survival. These results indicate that the cytoxicity of CuO NPs may involve the autophagic pathway in A549 cells.  相似文献   

12.
Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells.  相似文献   

13.
Cisplatin-based chemotherapy frequently resulted in acquired resistance of cancer cells. The underlying mechanism of such resistance is not fully understood especially the involvement of autophagy and autophagic cell death. This study thus investigated whether an alteration in autophagy could be responsible for cisplatin resistance in the long-term exposure lung carcinoma cells. The cisplatin resistant clone (H460/cis) of H460 cells was established by exposing the cells with gradually increasing concentrations of cisplatin until chemoresistance acquisition was elucidated by MTT, Hoechst 33342 staining and comet assays. Degree of autophagosome formation and level of LC3 marker were evaluated by acridine orange and western blot analysis, respectively. H460/cis cells exhibited irregular shape with ~3-fold resistant to cisplatin-induced apoptosis compared with H460 cells. Proteins analysis for LC3 indicated that the levels of LC3 in resistant cells were significantly lower than those in H460 cells. Moreover, autophagosome formation detected by acridine orange staining was dramatically reduced in the resistant cells, suggesting the role of autophagy in attenuating of cisplatin-induced cell death. Further, co-treatment of cisplatin with autophagy inducer, trifluorperazine, could resensitize H460/cis cells to cisplatin-induced cell death. Our findings reveal the novel mechanisms causing cisplatin resistance in lung carcinoma cells after long-term drug exposure regarding autophagy.  相似文献   

14.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

15.
《Journal of Asia》2007,10(4):369-374
Ethyl formate (EF) was tested in mixtures with natural products (NPs) as a fumigant against the internal stages of Sitophilus oryzae. These novel formulations of EF [EF:NPs = 9.0:1.0, (v/v)] were shown to be chemically stable for 1 month after initial mixing. Therefore, EF acts as a good solvent for various NPs having insecticidal activity. The toxicity of EF alone, and of the various EF formulations, was evaluated on each developmental stage at different concentrations and exposure times. The results show that the effect of EF alone, as compared with the various EF formulations, was similar or lower in the mixed age cultures (MAC) of S. oryzae after 6 hr of exposure. For the pupal stage of S. oryzae, EF + thujone showed increased toxicity (>20%) at both 6 hr of exposure at 67.4 mg/L, as well as at 24 hr of exposure at 37.6 mg/L. Also, EF + thujone, EF + menthone, and EF + carvone showed higher toxicities as compared to EF alone, on the pupal stage of S. oryzae after 24 hr of exposure at 37.6 mg/L. However, we couldn't find significant differences in the formulations in terms of their synergistic effects. The most significant result of this research was the ability to use EF as a solvent for the application of various natural materials as fumigants and/or protectants. Our continuing research is aimed at finding natural product formulations that possess enhanced toxicity with respect to the internal stages of stored grain pests, as well as low mammalian toxicity.  相似文献   

16.
Engineered nanomaterials, defined as having at least one dimension smaller than 100 nm, have revolutionized many technology sectors ranging from therapeutics and diagnostics to environmental monitoring and remediation. This has resulted in a rapid increase in their manufacture over the past few years, accompanied by an increased human exposure potential. However, understanding of the interactions of nanomaterials with biological systems is still rudimentary. We have described that an environmentally and medically relevant nano metal (cerium dioxide) can affect primary human monocyte viability and interact with programmed cell death pathways leading to apoptosis and autophagic cell death. Cerium dioxide nanoparticles (CeO2 NPs)-induced autophagy acts as a prodeath mechanism and leads to increased cytotoxicity of human monocytes. A better understanding of the implication and biological significance of CeO2 NPs-induced autophagy and apoptosis will help us understand the risks associated with its uses and develop safer nanomedicine.  相似文献   

17.
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.  相似文献   

18.
According to undiscovered toxicity and safety of magnesium oxide nanoparticles (MgO NPs) in isolated pancreatic islet cells, this study was designed to examine the effects of its various concentrations on a time-course basis on the oxidative stress, viability, and function of isolated islets of rat’s pancreas. Pancreatic islets were isolated and exposed to different MgO NP (<100 nm) concentrations within three different time points. After that, oxidative stress biomarkers were investigated and the best exposure time was selected. Then, safety of MgO NPs was investigated by flow cytometry and fluorescent staining, and levels of insulin secretion and caspase activity were measured. The results illustrated a considerable decrease in oxidative stress markers such as reactive oxygen species (ROS) and lipid peroxidation (LPO) levels of pancreatic islets which were treated by MgO NPs for 24 h. Also, in that time of exposure, cell apoptosis investigation by flow cytometry and insulin test showed that MgO NPs, in a concentration of 100 μg/ml, decreased the rate of apoptotic cells via inhibiting caspase-9 activity and made a significant increase in the level of insulin secretion. Data of function and apoptosis biomarkers correlated with each other. It is concluded that the use of MgO NPs in concentration of as low as 100 μg/ml can induce antiapoptotic, antioxidative, and antidiabetic effects in rat pancreatic islets, which support its possible benefit in islet transplantation procedures.  相似文献   

19.
Heavy metals, such as lead (Pb2+), are usually accumulated in human bodies and impair human''s health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号