首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liver X receptors (LXRs) are members of the nuclear receptor family, including the LXRα (NR1H3) and LXRβ (NR1H2) subtypes, which are related to the metabolism of glucose and cholesterol and possess anti-inflammatory functions. Mounting evidence has linked LXRs to the inhibition of cell proliferation in a variety of cancers. We revealed a differential distribution for NR1H3, but not for NR1H2, in colorectal cancer and adjacent normal tissues. We found that NR1H3 enhanced the inhibitory action of GW3965, an agonist of LXRs, on the proliferation of colorectal cancer cells. Upregulation of NR1H3 enhanced the inhibition of cell proliferation by GW3965 while silencing of NR1H3 attenuated the inhibitory effect of GW3965 on cell proliferation. Bioinformatic prediction and luciferase assays showed that NR1H3 was able to inhibit the activity of the epidermal growth factor receptor (EGFR) promoter. Moreover, we demonstrated that activation of NR1H3 inhibited the growth of transplanted tumors in an animal experiment, with the inhibition accompanied by downregulation of EGFR. Our findings suggest that NR1H3 controls cell proliferation by affecting EGFR promoter activity. The high expression of EGFR was due to the downregulation of NR1H3 which is a novel molecular mechanism in the development of colorectal cancer.  相似文献   

2.
3.
Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca2+ mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells.  相似文献   

4.
5.
6.
He Q  Huang B  Zhao J  Zhang Y  Zhang S  Miao J 《The FEBS journal》2008,275(22):5725-5732
Integrin beta4 is a tissue-specific protein, but its role in autophagy of lung adenocarcinoma cells is not clear. In this study, we used microtubule-associated protein 1 light chain 3 processing and acridine orange staining to reveal that knockdown of integrin beta4 by its specific siRNA induced autophagic cell death in A549 lung cancer cells. Next, we investigated the effects of siRNA-mediated downregulation of integrin beta4 on cell death and the level of p53. The proportion of dead cells and level of p53 were significantly increased. Inhibition of autophagy by the inhibitor 3-methyladenine attenuated the cell death induced by integrin beta4 knockdown. To further understand the relationship between p53 and integrin beta4 in autophagic cell death, we inhibited the expression of integrin beta4 by its specific siRNA in p53-mutated H322 lung cancer cells. Knockdown of integrin beta4 could not induce autophagic cell death in H322 cells. The data suggest that integrin beta4 is implicated in and associated with p53 in autophagy of lung cancer cells.  相似文献   

7.
We recently reported that Phenethyl caffeate benzoxanthene lignan (PCBL), a semisynthetic compound derived from Caffeic Acid Phenethyl Ester (CAPE), induces DNA damage and apoptosis in tumor cells. In this study, we further investigated whether PCBL induces autophagy in WiDr cells. We also analyzed the pathways regulating autophagy and the role of autophagy in PCBL-induced cell death. Our acridine orange staining and LC3 II expression results suggest that PCBL induces autophagosomes in WiDr cells. The levels of LC3 II expression we observed after co-treatment of PCBL with bafilomycin A1 and the reductions in p62 expression we observed after PCBL treatment in WiDr cells demonstrate increased autophagic flux, a reliable indicator of autophagic induction. The increased Beclin 1 expression in PCBL-treated cells and the incapacity of PCBL to induce LC3 II in 3-methyladenine (3-MA)-treated cells we observed suggests that PCBL-induced autophagy is class III PI3-kinase dependent. PCBL did not alter phosphorylation of the mTOR substrate p70 S6 kinase, indicating that PCBL-induced autophagy was not mTOR regulated. Two autophagy related proteins, Atg5 and Atg12, also remained uninduced during PCBL treatment. The increased caspase activity and expression levels of LC3 II and p62 we observed in response to PCBL treatment in primary glioma cells demonstrates that PCBL-induced apoptosis and autophagy were not cell line specific. Pharmacological inhibition of autophagy did not alter the antitumor efficacy of PCBL in WiDr cells. This attests to the bystander nature of PCBL-induced autophagy (in terms of cell death). In toto, these data suggest that PCBL induces a class III kinase dependent, but mTOR independent, bystander mode of autophagy in WiDr cells.  相似文献   

8.
Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.  相似文献   

9.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

10.
11.
T cell acute lymphoblastic leukemia (T-ALL) is one of the most frequent malignancies in children, and the CXCR4 receptor plays an important role in the metastasis of this malignancy. Ghrelin is a hormone with various functions including stimulation of the release of growth hormone and autophagy in cancer cells. Moreover, SIRT1 and AMPK (AMP-activated protein kinase) stimulate expression of proteins involved in autophagy. On the other hand, autophagic cell death can be an alternative target for cancer therapy, in the absence of apoptosis. The relationship between ghrelin and the SIRT1/AMPK axis and the resulting effects on autophagy, apoptosis, proliferation, and expression of CXCR4 and the ghrelin receptor (GHS-R1a), in Jurkat and Molt-4 human lymphoblastic cell lines was not previously clear. Here we demonstrate that SIRT1 expression is upregulated during the induction of autophagy by ghrelin, an effect that is inhibited by inactivation of SIRT1/AMPK axis. In addition, ghrelin can affect CXCR4 and GHS-R1a expression. In conclusion, this work reveals that ghrelin induces autophagy, invasion, and downregulation of ghrelin receptor expression via the SIRT1/AMPK axis in lymphoblastic cell lines. However, in these cell lines ghrelin-induced autophagy does not lead to cell death due to weak induction of apoptosis.  相似文献   

12.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

13.
Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.  相似文献   

14.
15.
A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endoplasmic reticulum (ER) stress in tubular cells. Autophagy has recently been described to be induced by ER stress and to alleviate its deleterious effects. In this study, we demonstrate that CsA induces autophagy in primary cultured human renal tubular cells through LC3II expression and autophagosomes visualization by electron microscopy. Autophagy is dependant on ER stress because various ER stress inducers activate autophagy, and salubrinal, an inhibitor of eIF2alpha dephosphorylation that protects cells against ER stress, inhibited LC3II expression. Furthermore, autophagy inhibition during CsA treatment with beclin1 siRNA significantly increases tubular cell death. Finally, immunohistochemical analysis of rat kidneys demonstrates a positive LC3 staining on injured tubular cells, suggesting that CsA induces autophagy in vivo. Taken together, these results demonstrate that CsA, through ER stress induction, activates autophagy as a protection against cell death.  相似文献   

16.
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells.Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death.Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.  相似文献   

17.
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.  相似文献   

18.
《Autophagy》2013,9(6):783-791
A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endoplasmic reticulum (ER) stress in tubular cells. Autophagy has recently been described to be induced by ER stress and to alleviate its deleterious effects. In this study, we demonstrate that CsA induces autophagy in primary cultured human renal tubular cells through LC3II expression and autophagosomes visualization by electron microscopy. Autophagy is dependant of ER stress because various ER stress inducers activate autophagy and salubrinal, an inhibitor of eIF2α dephosphorylation that protects cells against ER stress, inhibited LC3II expression. Furthermore, autophagy inhibition during CsA treatment with beclin1 siRNA significantly increases tubular cell death. Finally, immunohistochemical analysis of rat kidneys demonstrates a positive LC3 staining on injured tubular cells, suggesting that CsA induces autophagy in vivo. Taken together, these results demonstrate that CsA, through ER stress induction, activates autophagy as a protection against cell death.  相似文献   

19.

Background

Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD) markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping.

Methodology/Principal Findings

By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment.

Conclusions/Significance

We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.  相似文献   

20.
Hsin IL  Ou CC  Wu TC  Jan MS  Wu MF  Chiu LY  Lue KH  Ko JL 《Autophagy》2011,7(8):873-882
Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号