首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy has an important role in tumor biology of hepatocellular carcinoma (HCC). Recent studies demonstrated that tissue factor (TF) combined with coagulation factor VII (FVII) has a pathological role by activating a G-protein-coupled receptor called protease-activated receptor 2 (PAR2) for tumor growth. The present study aimed to investigate the interactions of autophagy and the coagulation cascade in HCC. Seventy HCC patients who underwent curative liver resection were recruited. Immunohistochemical staining and western blotting were performed to determine TF, FVII, PAR2 and light chain 3 (LC3A/B) expressions in tumors and their contiguous normal regions. We found that the levels of autophagic marker LC3A/B-II and coagulation proteins (TF, FVII and PAR2) were inversely correlated in human HCC tissues. Treatments with TF, FVII or PAR2 agonist downregulated LC3A/B-II with an increased level of mTOR in Hep3B cells; in contrast, knockdown of TF, FVII or PAR2 increased LC3A/B. Furthermore, mTOR silencing restored the impaired expression of LC3A/B-II in TF-, FVII- or PAR2-treated Hep3B cells and activated autophagy. Last, as an in vivo correlate, we administered TF, FVII or PAR2 agonist in a NOD/severe combined immunodeficiency xenograft model and showed decreased LC3A/B protein levels in HepG2 tumors with treatments. Overall, our present study demonstrated that TF, FVII and PAR2 regulated autophagy mainly via mTOR signaling. The interaction of coagulation and autophagic pathways may provide potential targets for further therapeutic application in HCC.  相似文献   

2.
Endometrial cancer (EC) constitutes a common female genital tract tumor with a rising incidence rate. Sirtuin 1 (SIRT1) is a member of histone deacetylase, which extensively participates in the progression of aging, cell death, and tumorigenesis. This study explored the effect of SIRT1-mediated LC3 acetylation on autophagy and proliferation of EC cells. SIRT1 expression in EC tissues and adjacent tissues, EC cell lines and normal human epithelial cells was detected. SIRT1 expression was elevated in EC cell lines and tissues. Knockdown of SIRT1 inhibited proliferation, migration, and invasion of EC cells. Then, EC cells were starved in serum-free medium, and levels of autophagy-related proteins were detected. Starvation induced autophagy of EC cells. The starvation-treated EC cells showed an increased SIRT1 expression, a decreased LC3 acetylation level and an increased autophagy level. The proliferation and autophagy of EC cells under different treatments were evaluated. In EC cells transfected with overexpressing SIRT1, LC3 acetylation was inhibited and cell proliferation was promoted. Moreover, overexpressing SIRT1 facilitated growth and autophagy of transplanted tumors in nude mice. In conclusion, SIRT1 promoted autophagy and proliferation of EC cells by reducing acetylation level of LC3.  相似文献   

3.
Mechanical forces induced by interstitial fluid flow in and surrounding tissues and by blood/lymphatic flow in vessels may modulate cancer cell invasion and metastasis and anticancer drug delivery. Our previous study demonstrated that laminar flow-induced shear stress induces G2/M arrest in tumor cells. However, whether shear stress modulates final cell fate remains unclear. In this study, we investigated the role of flow-induced shear stress in modulating the survival of four human tumor cell lines, i.e., Hep3B hepatocarcinoma cells, MG63 osteosarcoma cells, SCC25 oral squamous carcinoma cells, and A549 carcinomic alveolar basal epithelial cells. Laminar shear stress (LSS) ranging from 0.5 to 12 dyn/cm2 induced death of these four tumor cell lines. In contrast to LSS at 0.5 dyn/cm2, oscillatory shear stress (OSS) at 0.5 ± 4 dyn/cm2 cannot induce cancer cell death. Both LSS and OSS had no effect on human normal hepatocyte, lung epithelial, and endothelial cells. Application of LSS to these four cell lines increased the percentage of cells stained positively for annexin V–FITC, with up-regulations of cleaved caspase-8, -9, and -3, and PARP. In addition, LSS also induced Hep3B cell autophagy, as detected by acidic vesicular organelle formation, LC3B transformation, and p62/SQSTM1 degradation. By transfecting with small interfering RNA, we found that the shear-induced apoptosis and autophagy are mediated by bone morphogenetic protein receptor type (BMPR)-IB, BMPR-specific Smad1 and Smad5, and p38 mitogen-activated protein kinase in Hep3B cells. Our findings provide insights into the molecular mechanisms by which shear stress induces apoptosis and autophagy in tumor cells.  相似文献   

4.
Liu YL  Yang PM  Shun CT  Wu MS  Weng JR  Chen CC 《Autophagy》2010,6(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

5.
《Autophagy》2013,9(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

6.
Plumbagin (PL), an active naphthoquinone compound, has been demonstrated to be a potential anticancer agent. However, the underlying anticancer mechanism is not fully understood. In this study, the human hepatocellular carcinoma (HCC) SMMC-7721 cell line was studied in an in vitro model. The cell proliferation was inhibited by PL in a dose- and time-dependent manner. Electron microscopy, acridine orange staining, and immunofluorescence were used to evaluate autophagosome formation and LC3 protein expression in PL-treated SMMC-7721 cells. Real-time polymerase chain reaction and Western blot showed that PL treatment suppressed the expression of apoptosis and autophagy factors (LC3, Beclin1, Atg7, and Atg5), which are associated with tumor apoptosis and autophagy in SMMC-7721 cells. In the study of in vitro tumor nude mouse models, PL can inhibit tumor growth. Cell apoptosis and autophagy of the transplanted tumors were evaluated by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot. In addition, in the in vivo studies of HCC cells, we found that pretreatment with the autophagy inhibitor 3-methyladenine blocked the formation of apoptosis induced by PL. In contrast, administration of the apoptosis inhibitor Z-VAD did not affect PL-induced autophagy. Taken together, our findings strongly suggest that PL is a promising drug with significant antitumor activity in HCC.  相似文献   

7.
《Autophagy》2013,9(4):467-475
Autophagy, an evolutionarily conserved response to stress, has recently been implicated in cancer initiation and progression, but the detailed mechanisms and functions have not yet been fully elucidated. One major obstacle to our understanding is lack of an efficient and robust method to specifically monitor autophagic cells in cancer specimens. To identify molecular events associated with autophagy, we performed cDNA microarray analysis of autophagic glioblastoma cell lines. Based on the analysis, we raised a polyclonal antibody against isoform B of human microtubule-associated protein 1 light chain 3 (LC3B). Application of the anti-LC3B antibody revealed the presence of autophagic cells in both in vitro and in vivo settings. Of the 65 glioblastoma tissues, 31 had highly positive cytoplasmic staining of LC3B. The statistical interaction between cytoplasmic staining of LC3B and Karnofsky Performance Scale score was significant. High expression of LC3B was associated with an improved outcome for patients with poorer performance, whereas, for patients with normal performance, survival was better for patients with low staining than with high staining of LC3B. Anti-LC3B antibody provides a useful tool for monitoring the induction of autophagy in cancer cells and tissues.  相似文献   

8.
Interleukin-6     
《Autophagy》2013,9(4):650-663
Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.  相似文献   

9.
Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.  相似文献   

10.
Autophagy, an evolutionarily conserved response to stress, has recently been implicated in cancer initiation and progression, but the detailed mechanisms and functions have not yet been fully elucidated. One major obstacle to our understanding is lack of an efficient and robust method to specifically monitor autophagic cells in cancer specimens. To identify molecular events associated with autophagy, we performed cDNA microarray analysis of autophagic glioblastoma cell lines. Based on the analysis, we raised a polyclonal antibody against isoform B of human microtubule-associated protein 1 light chain 3 (LC3B). Application of the anti-LC3B antibody revealed the presence of autophagic cells in both in vitro and in vivo settings. Of the 65 glioblastoma tissues, 31 had highly positive cytoplasmic staining of LC3B. The statistical interaction between cytoplasmic staining of LC3B and Karnofsky Performance Scale score was significant. High expression of LC3B was associated with an improved outcome for patients with poorer performance, whereas, for patients with normal performance, survival was better for patients with low staining than with high staining of LC3B. Anti-LC3B antibody provides a useful tool for monitoring the induction of autophagy in cancer cells and tissues.  相似文献   

11.
Deficiency in autophagy, a lysosome-dependent cell degradation pathway, has been associated with a variety of diseases especially cancer. Recently, the activation of autophagy by hepatitis B virus X (HBx) protein, which is implicated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), has been identified in hepatic cells. However, the underlying mechanism and the relevance of HBx-activated autophagy to the carcinogenesis caused by HBV remain elusive. Here, by transfection of HBV genomic DNA and HBx in hepatic and hepatoma cells, we showed that HBV- or HBx-induced autophagosome formation was accompanied by unchanged MTOR (mechanistic target of rapamycin) activity and decreased degradation of LC3 and SQSTM1/p62, the typical autophagic cargo proteins. Further functional and morphological analysis indicated that HBx dramatically impaired lysosomal acidification leading to a drop in lysosomal degradative capacity and the accumulation of immature lysosomes possibly through interaction with V-ATPase affecting its lysosome targeting. Moreover, clinical specimen test showed increased SQSTM1 and immature lysosomal hydrolase CTSD (cathepsin D) in human liver tissues with chronic HBV infection and HBV-associated liver cancer. These data suggest that a repressive effect of HBx on lysosomal function is responsible for the inhibition of autophagic degradation, and this may be critical to the development of HBV-associated HCC.  相似文献   

12.
13.
14.
We investigated the molecular mechanisms underlying the effect of sorafenib and SC-59, a novel sorafenib derivative, on hepatocellular carcinoma (HCC). Sorafenib activated autophagy in a dose- and time-dependent manner in the HCC cell lines PLC5, Sk-Hep1, HepG2 and Hep3B. Sorafenib downregulated phospho-STAT3 (P-STAT3) and subsequently reduced the expression of myeloid cell leukemia-1 (Mcl-1). Inhibition of Mcl-1 by sorafenib resulted in disruption of the Beclin 1-Mcl-1 complex; however, sorafenib did not affect the amount of Beclin 1, suggesting that sorafenib treatment released Beclin 1 from binding with Mcl-1. Silencing of SHP-1 by small interference RNA (siRNA) reduced the effect of sorafenib on P-STAT3 and autophagy. Ectopic expression of Mcl-1 abolished the effect of sorafenib on autophagy. Knockdown of Beclin 1 by siRNA protected the cells from sorafenib-induced autophagy. Moreover, SC-59, a sorafenib derivative, had a more potent effect on cancer cell viability than sorafenib. SC-59 downregulated P-STAT3 and induced autophagy in all tested HCC cell lines. Furthermore, our in vivo data showed that both sorafenib and SC-59 inhibited tumor growth, downregulated P-STAT3, enhanced the activity of SHP-1 and induced autophagy in PLC5 tumors, suggesting that sorafenib and SC-59 activate autophagy in HCC. In conclusion, sorafenib and SC-59 induce autophagy in HCC through a SHP-1-STAT3-Mcl-1-Beclin 1 pathway.  相似文献   

15.
Y Wu  W Jiang  Y Wang  J Wu  H Saiyin  X Qiao  X Mei  B Guo  X Fang  L Zhang  H Lou  C Wu  S Qiao 《PloS one》2012,7(8):e42976
Breast cancer metastasis suppressor 1 (BRMS1) was originally identified as an active metastasis suppressor in human breast cancer. Loss of BRMS1 expression correlates with tumor progression, and BRMS1 suppresses several steps required for tumor metastasis. However, the role of BRMS1 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that the expression level of BRMS1 was significantly down-regulated in HCC tissues. Expression of BRMS1 in SK-Hep1 cells did not affect cell growth under normal culture conditions, but sensitized cells to apoptosis induced by serum deprivation or anoikis. Consistently, knockdown of endogenous BRMS1 expression in Hep3B cells suppressed cell apoptosis. We identified that BRMS1 suppresses osteopontin (OPN) expression in HCC cells and that there is a negative correlation between BRMS1 and OPN mRNA expression in HCC tissues. Moreover, knockdown of endogenous OPN expression reversed the anti-apoptosis effect achieved by knockdown of BRMS1. Taken together, our results show that BRMS1 sensitizes HCC cells to apoptosis through suppressing OPN expression, suggesting a potential role of BRMS1 in regulating HCC apoptosis and metastasis.  相似文献   

16.
Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC). In the present study, we aimed to study the role of autophagy in HCC cells under FSS. The results showed that FSS upregulated the protein markers of autophagy, induced LC3B aggregation and formation of autophagosomes. Inhibition of integrin by Cliengitide (Cli) or inhibition of the microfilaments formation both inhibited the activation of autophagy in HepG2 under FSS. In addition, Cli inhibited the microfilaments formation and expressions of Rac1 and RhoA in HepG2 cells under FSS. Finally, inhibition of autophagy suppressed the cell migration and invasion in HepG2 under FSS. In conclusion, FSS induced autophagy to promote migration and invasion of HepG2 cells via integrin/cytoskeleton pathways.  相似文献   

17.
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes.  相似文献   

18.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

19.
20.
p62/sequestosome-1 is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis, and plays an important role at the crossroad between autophagy and cancer. But, the connection between autophagy and cancer is complex and in some cases contradictory. Human colorectal cancer tissues from patients were analyzed for expression of p62 and Microtubule-associated protein light chain 3 (LC3, an autophagosome marker) using immunostaining, western blotting, real-time PCR, and confocal microscopy. To study the effects of p62 on autophagy and cell growth, shRNA for p62 was applied and cell growth curve was monitored in human colorectal cancer cell. In vivo experiments were done using the mouse xenograft model. We showed that up-regulated expression of p62 and LC3 in colorectal cancer tissues. We also demonstrated that specifically knockdown the expression of p62 showed significantly inhibitory effects not only on autophagy activation, but also on tumor growth both in vitro and xenograft tumors model. The ectopic overexpression of p62 and autophagy activation contributes to colorectal tumorigenesis. p62 and autophagy will be therapy targets for the treatment of colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号