首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

2.
《Autophagy》2013,9(12):2297-2309
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

3.
The membrane source for autophagosome biogenesis is an unsolved mystery in the study of autophagy. ATG16L1 forms a complex with ATG12–ATG5 (the ATG16L1 complex). The ATG16L1 complex is recruited to autophagic membranes to convert MAP1LC3B-I to MAP1LC3B-II. The ATG16L1 complex dissociates from the phagophore before autophagosome membrane closure. Thus, ATG16L1 can be used as an early event marker for the study of autophagosome biogenesis. We found that among 3 proteins in the ATG16L1 complex, only ATG16L1 formed puncta-like structures when transiently overexpressed. ATG16L1+ puncta formed by transient expression could represent autophagic membrane structures. We thoroughly characterized the transiently expressed ATG16L1 in several mammalian cell lines. We found that transient expression of ATG16L1 not only inhibited autophagosome biogenesis, but also aberrantly targeted RAB11-positive recycling endosomes, resulting in recycling endosome aggregates. We conclude that transient expression of ATG16L1 is not a physiological model for the study of autophagy. Caution is warranted when reviewing findings derived from a transient expression model of ATG16L1.  相似文献   

4.
Acute lung injury (ALI) is a life-threatening medical condition with higher mortality and morbidity in elderly patients. Recently, metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, has been shown to be an effective anti-inflammatory agent in ALI. However, the mechanism of this regulation still remains poorly understood. In our study, we found that epithelial cell senescence was elevated after lipopolysaccharide (LPS) exposure in vivo and in vitro, accompanied by decreased expression of ATG5 and impaired autophagy activity. To further discover the molecular regulation mechanism between cellular senescence and autophagy in LPS-treated MLE-12 cells, we demonstrated that inhibition of ATG5 could decrease autophagy levels and promote the senescence of MLE-12 cells. On the contrary, elevating the expression of ATG5 could effectively suppress LPS-induced cellular senescence via enhancing autophagy activity. In addition, we demonstrated that metformin could protect MLE-12 cells from LPS-induced senescence via increasing the expression of ATG5 and augmenting autophagy activity. Our data implicate that activation of autophagy by metformin may provide a preventive and therapeutic strategy for ALI.  相似文献   

5.
Suppressor of cytokine signaling-1 (SOCS-1) is a member of the suppressor of cytokine signaling family of proteins and an inhibitor of interleukin-6 (IL-6) signaling. SOCS-1 has been shown to protect cells from cellular damage and apoptosis induced by tumor necrosis factor (TNF), lipopolysaccharide (LPS), and interferon gamma (IL-γ). However, it is not known whether increased SOCS-1 is protective during pulmonary oxidative stress. Therefore, we hypothesized that increased SOCS-1 in the lungs of mice would be protective in the setting of hyperoxic lung injury. We administered SOCS-1 adenovirus (Ad-SOCS-1) intratracheally into the lungs and exposed the mice to 100% O2. Mice infected with GFP adenovirus (Ad-GFP) were used as controls. Mice treated with Ad-SOCS-1 had enhanced survival in 100% oxygen compared to Ad-GFP-administered mice. After 3 days of hyperoxia, Ad-GFP mice were ill and tachypnic and died after 4 days. In contrast, all Ad-SOCS-1-treated mice survived for at least 6 days in hyperoxia and 80% survived beyond 7 days. Ad-SOCS-1 transfection protected mouse lungs from injury as indicated by lower lung wet/dry weight, alveolar–capillary protein leakage, reduced infiltration of inflammatory cells, and lower content of thiobarbituric acid-reactive substances in lung homogenate. Our results also indicated that Ad-SOCS-1 significantly inhibits hyperoxia-induced ASK-1 (apoptosis signal-regulating kinase 1) expression. Taken together, these findings show that increased expression of adenovirus-mediated SOCS-1 in the lungs of mice significantly protects against hyperoxic lung injury.  相似文献   

6.
The mammalian target of rapamycin (mTOR) is a central regulator of many major cellular processes including protein and lipid synthesis and autophagy, and is also implicated in an increasing number of pathological conditions. Emerging evidence suggests that both mTOR and autophagy are critically involved in the pathogenesis of pulmonary diseases including acute lung injury (ALI). However, the detailed mechanisms of these pathways in disease pathogenesis require further investigations. In certain cases within the same disease, the functions of mTOR and autophagy may vary from different cell types and pathogens. Here we review recent advances about the basic machinery of mTOR and autophagy, and their roles in ALI. We further discuss and propose the likelihood of cell type- and pathogen-dependent functions of these pathways in ALI pathogenesis.  相似文献   

7.
Severe acute pancreatitis (SAP) is a condition associated with high rates of mortality and lengthy hospital stays. In the current study, SAP mouse models were established in BALB/c wild-type and P21-activated kinase 1 (PAK1) knockdown mice with the objective of determining the expression of microRNA-542-5p (miR-542-5p) and the subsequent elucidation of the mechanism by which it influences acute lung injury (ALI) by mediating mitogen-activated protein kinase (MAPK) signaling and binding to PAK1. The targeting relationship between miR-542-5p and PAK1 was verified using the bioinformatics prediction website and by the means of a dual-luciferase reporter assay. Following the SAP model establishment, the mice were assigned into various groups with the introduction of different mimic and inhibitors in an attempt to investigate the effects involved with miR-542-5p on inflammatory reactions among mice with SAP-associated ALI. Our results indicated that PAK1 was targeted and negatively mediated by miR-542-5p. Mice with SAP-associated ALI exhibited an increased wet-to-dry weight ratio, myeloperoxidase activity, serum amylase activity, TNF-α, interleukin-1 beta (IL-1β), and intercellular adhesion molecule-1 (ICAM-1) contents, p-p38MAPK, p-ERK1/2, and p-JNK protein levels as well as PAK1 positive expression, while decreased miR-542-5p levels were observed. Functionally, overexpression of miR-542-5p improves ALI in mice with SAP via inhibition of the MAPK signaling pathway by binding to PAK1.Based on the evidence from experimental models, miR-542-5p was shown to improve ALI among mice with SAP, while suggesting that the effect may be related to the inactivation of the MAPK signaling pathway and downregulation of PAK1 gene. Thus, miR-542-5p could serve as a promising target for ALI treatment.  相似文献   

8.
Acute respiratory distress syndrome (ARDS) is a type of acute lung injury (ALI), which causes high morbidity and mortality. So far, effective clinical treatment of ARDS is still limited. Recently, miR-146b has been reported to play a key role in inflammation. In the present study, we evaluated the functional role of miR-146b in ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. The miR-146b expression could be induced by LPS stimulation, and miR-146b overexpression was required in the maintenance of body weight and survival of ALI mice; after miR-146b overexpression, LPS-induced lung injury, pulmonary inflammation, total cell and neutrophil counts, proinflammatory cytokines, and chemokines in bronchial alveolar lavage (BAL) fluid were significantly reduced. The promotive effect of LPS on lung permeability through increasing total protein, albumin and IgM in BAL fluid could be partially reversed by miR-146b overexpression. Moreover, in murine alveolar macrophages, miR-146b overexpression reduced LPS-induced TNF-α and interleukin (IL)-1β releasing. Taken together, we demonstrated that miR-146b overexpression could effectively improve the LPS-induced ALI; miR-146b is a promising target in ARDS treatment.  相似文献   

9.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

10.
Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (BM) in NSCLC patients. We genotyped 16 single nucleotide polymorphisms (SNPs) in 7 autophagy-related (ATG) genes (ATG3, ATG5, ATG7, ATG10, ATG12, ATG16L1, and MAP1LC3/LC3) by using DNA from blood samples of 323 NSCLC patients. Further, we evaluated the potential associations of these genes with subsequent BM development. Lung cancer cell lines stably transfected with ATG16L1: rs2241880 (T300A) were established. Mouse models of brain metastasis were developed using cells transfected with ATG16L1–300T or ATG16L1–300A. ATG10: rs10036653 and ATG16L1: rs2241880 were significantly associated with a decreased risk of BM (respective hazard ratios [HRs]=0.596, 95% confidence interval [CI] 0.398–0.894, P = 0.012; and HR = 0. 655, 95% CI 0.438–0.978, P = 0.039, respectively). ATG12: rs26532 was significantly associated with an increased risk of BM (HR=1.644, 95% CI 1.049–2.576, P = 0.030). Invasion and migration assays indicated that transfection with ATG16L1–300T (vs. 300A) stimulated the migration of A549 cells. An in vivo metastasis assay revealed that transfection with ATG16L1–300T (vs. 300A) significantly increased brain metastasis. Our results indicate that genetic variations in autophagy-related genes can predict BM and that genome analysis would facilitate stratification of patients for BM prevention trials.  相似文献   

11.
Impaired mitochondrial function is a key factor attributing to lung ischaemia‐reperfusion (IR) injury, which contributes to major post‐transplant complications. Thus, the current study was performed to investigate the role of mitochondrial autophagy in lung I/R injury and the involvement of the mTOR pathway. We established rat models of orthotopic left lung transplantation to investigate the role of mitochondrial autophagy in I/R injury following lung transplantation. Next, we treated the donor lungs with 3‐MA and Rapamycin to evaluate mitochondrial autophagy, lung function and cell apoptosis with different time intervals of cold ischaemia preservation and reperfusion. In addition, mitochondrial autophagy, and cell proliferation and apoptosis of pulmonary microvascular endothelial cells (PMVECs) exposed to hypoxia‐reoxygenation (H/R) were monitored after 3‐MA administration or Rapamycin treatment. The cell apoptosis could be inhibited by mitochondrial autophagy at the beginning of lung ischaemia, but was rendered out of control when mitochondrial autophagy reached normal levels. After I/R of donor lung, the mitochondrial autophagy was increased until 6 hours after reperfusion and then gradually decreased. The elevation of mitochondrial autophagy was accompanied by promoted apoptosis, aggravated lung injury and deteriorated lung function. Moreover, the suppression of mitochondrial autophagy by 3‐MA inhibited cell apoptosis of donor lung to alleviate I/R‐induced lung injury as well as inhibited H/R‐induced PMVEC apoptosis, and enhanced its proliferation. Finally, mTOR pathway participated in I/R‐ and H/R‐mediated mitochondrial autophagy in regulation of cell apoptosis. Inhibition of I/R‐induced mitochondrial autophagy alleviated lung injury via the mTOR pathway, suggesting a potential therapeutic strategy for lung I/R injury.  相似文献   

12.
13.
目的探讨复方清下汤对脓毒症大鼠肺组织ICAM-1及AQP-1基因表达的影响,进一步探讨其减轻肺损伤机制。方法将健康SD大鼠随机分为4组,每组10只:(1)假手术组(SHAM组),SHAM组只翻动盲肠,不做其他处理;(2)脓毒症肺损伤组(模型组),以盲肠结扎穿孔诱发ALI模型;(3)盲肠结扎穿孔+复方清下汤组(造模后立即灌胃给药,造模后8 h再次灌胃1次,剂量:10 m l/kg);(4)盲肠结扎穿孔+头孢哌酮舒巴坦(舒普深)(造模后立即静脉注射1次,造模后8 h再次静脉注射1次,剂量:0.2 g/kg)造模24 h后收集标本。应用免疫组织化学和Western blotting法检测肺组织中AQP-1、ICAM-1的表达,RT-PCR检测肺组织上述蛋白mRNA表达。结果与SHAM组比较,模型组应用免疫组织化学及W estern-b lotting法检测ICAM-1的表达均显著升高(P〈0.01),而AQP-1则表达明显降低(P〈0.01);RT-PCR法检测mRNA转录水平与蛋白表达结果基本一致。抗生素及中药处理组与模型组比较,上述细胞因子ICAM-1的表达明显降低(P〈0.05),而AQP-1表达上调(P〈0.01),抗生素及中药处理组2组检测数据相近。结论脓毒症大鼠肺损伤时细胞因子ICAM-1过度表达而AQP-1蛋白表达下调可能是造成脓毒症肺损伤的重要原因;复方清下汤处理的动物模型肺损伤减轻的同时ICAM-1和AQP-1表达变化,提示它可能通过调控ICAM-1和AQP-1表达起作用。  相似文献   

14.
目的:研究大鼠肢体缺血/再灌注后急性肺损伤时,内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(i-NOS)的表达及其在急性肺损伤发生中的作用。方法:雄性Wistar大鼠于后肢根部阻断血流后松解(4h/4h),分别给予L-Arg和氨基胍(AG)预先干预,分为control、IR、L-Arg和AG组,免疫组织化学方法检测肺组织中iNOS和eNOS的表达,同时检测肺组织中MDA、MPO、W/D和NO2^-/NO3^-值,肺组织形态学观察以评价肺损伤的程度。结果:与control组比较,I/R组eNOS表达降低,iNOS表达增强,MDA、MPO、W/D和NO2^-/NO3^-值增加。肺组织充血、炎细胞浸润,肺泡腔渗液;与I/R组比较,L-Arg组eNOS、iNOS表达无明显变化,NO2^-/NO3^-增加。MDA、MPO、W/D降低,肺组织损伤有减轻趋势,AG组eNOS表达无明显变化,iNOS活性降低,NO2^-/NO3^-减少,MDA、MPO、W/D增加,肺组织损伤有加重趋势。结论:肢体缺血/再灌注急性肺损伤过程中,iNOS表达增加,NO生成增多,在肺损伤发生中有一定的保护作用。  相似文献   

15.
目的盲肠结扎穿孔导致大肠埃希菌腹膜炎进而建立脓毒症肺损伤大鼠模型,检测炎性反应时,细胞因子的调控变化,探讨肺水肿的形成机制。经复方清下汤处理后检测上述变化。方法将健康SD大鼠随机分为4组,每组10只:假手术组(SHAM组),只翻动盲肠,不做其他处理;脓毒血症肺损伤组(模型组),盲肠结扎穿孔诱发急性肺损伤(ALI)模型;盲肠结扎穿孔+复方清下汤组(造模后立即灌胃给药,造模后8 h再次灌胃1次,剂量:10 ml/kg);盲肠结扎穿孔+头孢哌酮舒巴坦组(抗生素舒普深)(造模后立即静脉注射1次,造模后8 h再次静脉注射1次,剂量:0.2 g/kg),造模24 h后收集标本。分别观察大鼠的一般状态,留取下腔静脉血清进行白介素-1(IL-1)、白介素-6(IL-6)的测定。镜下观察肺组织病理形态学改变,测量肺湿/干比值的变化。结果与SHAM组比较,模型组IL-1、IL-6水平明显升高(P0.01),肺间质和肺泡内水肿,伴大量红细胞渗出(出血)和纤维素沉积,肺泡间隔毛细血管内皮细胞高度肿胀。肺湿/干比值明显增加(P0.01),抗生素及中药处理组与模型组比较,IL-1、IL-6水平明显降低(P0.01),肺湿/干比值明显降低(P0.01),肺组织镜下表现:中药处理组及抗生素组组较模型组肺泡间隔变窄,毛细血管内皮细胞肿胀减轻,出血减轻,纤维素渗出明显减少。结论实验应用放免检测、显微镜观察以及称量肺湿/干比值等手段,进一步证实了脓毒血症大鼠肺损伤时血清中主要的炎性细胞因子IL-1、IL-6过度表达的情况,并从病理学角度,证实炎性介质的过度表达是造成脓毒症肺损伤的重要原因。经复方清下汤处理的动物模型得到相反结论,为治疗脓毒血症大鼠肺损伤提供一个可能的新的手段。  相似文献   

16.
目的 探讨复方清下汤对脓毒症大鼠肺组织白介素-1(IL-1)及白介素-6(IL-6)基因表达的影响,进一步探讨其减轻肺损伤机制.方法 将健康SD大鼠随机分为4组,每组10只:假手术组(SHAM组),脓毒症肺损伤组(模型组),盲肠结扎穿孔+复方清下汤组,以及盲肠结扎穿孔+头孢哌酮舒巴坦(舒普深)组,造模24 h后收集标本.应用免疫组织化学和Westernblotting法检测肺组织中IL-1、IL-6的表达,RT-PCR检测肺组织上述蛋白mRNA表达.结果 与SHAM组比较,模型组IL-1、IL-6的mRNA转录水平和蛋白水平表达均显著升高(P<0.01);抗生素及中药处理组与模型组比较,IL-1、IL-6的表达明显降低(P<0.01),抗生素及中药处理组两组检测数据相近.结论 脓毒症大鼠肺损伤时细胞因子IL-1、IL-6过度表达可能是造成脓毒症肺损伤的重要原因;复方清下汤处理的动物模型肺损伤减轻的同时IL-1、IL-6表达变化,提示它可能通过调控IL-1、IL-6表达起作用.  相似文献   

17.
18.
《Cell reports》2023,42(8):112990
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
Angiotensin II (Ang II) plays an important role in inflammatory process. Acute lung injury (ALI), an inflammatory disorder of the lung, is commonly associated with endotoxemia; however, the mechanism that endotoxin (lipopolysaccharide, LPS) induces the inflammatory response in ALI is not well defined. Here, we showed, in LPS-induced ALI rat model, that Ang II and Ang II type 1 (AT1) receptor were significantly increased in lung tissues, compared with those in controls. Meanwhile, nuclear factor (NF)-κB-DNA-binding activity, tumor necrosis factor (TNF)-α mRNA, and pneumocytic apoptosis were significantly increased. Moreover, pretreatment of rats with losartan, an antagonist of AT1 receptor for Ang II, improved the inflammation, reduced the elevation of Ang II and AT1 receptor, and inhibited NF-κB-DNA-binding activity, expression of TNF-α mRNA, and pneumocytic apoptosis. The data indicate that Ang II may mediate the inflammatory process in LPS-induced ALI through AT1 receptor, which can be blocked by losartan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号