首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Mitophagy is a main type of selective autophagy, via which damaged mitochondria are selectively degraded via the autophagic pathway. The protein kinase PINK1 and E3 ubiquitin ligase PRKN are the most well studied regulators of mitophagy, via a feedforward mechanism involving ubiquitin phosphorylation (p-Ser65-Ub) and accumulation at the damaged mitochondria. However, it is unknown whether there is a protein phosphatase against PINK1-mediated phosphorylation of ubiquitin. We recently reported that PTEN-L, a newly identified PTEN isoform, is a novel negative regulator of mitophagy through dephosphorylation of p-Ser65-Ub. Our data demonstrate that a significant portion of PTEN-L localizes at the outer mitochondrial membrane and is able to prevent PRKN’s mitochondrial translocation, reduce the phosphorylation of PRKN, impair its E3 ligase activity as well as maintain PRKN in a closed/inactive status. Moreover, we found that PTEN-L dephosphorylates p-Ser65-Ub to disrupt the feedforward mechanism of mitophagy. Our findings suggest that PTEN-L acts as a brake in the regulation of mitophagy.

Abbreviations: ATR: alternatively translated region; CCCP: carbonylcyanide 3-chlorophenylhydrazone; DUBs: deubiquitinating enzymes; MFN2: mitofusion2; MS/MS: tandem mass spectrometry; mtDNA: mitochondrial DNA; MTS: mitochondrial targeting sequences; O/A: oligomycin and antimycin A; PINK1: PTEN induced putative kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PTEN: phosphatase and tensin homolog; PTEN-L: phosphatase and tensin homolog-long; Ub: ubiquitin; USP: ubiquitin-specific proteases; YFP: yellow fluorescence protein.  相似文献   


2.
Linliang Zhang  Yali Qin 《Autophagy》2018,14(10):1665-1673
Viral infection causes many physiological alterations in the host cell, and many of these alterations can affect the host mitochondrial network, including mitophagy induction. A substantial amount of literature has been generated that advances our understanding of the relationship between mitophagy and several viruses. Some viruses trigger mitophagy directly, and indirectly and control the mitophagic process via different strategies. This enables viruses to promote persistent infection and attenuate the innate immune responses. In this review, we discuss the events of virus-regulated mitophagy and the functional relevance of mitophagy in the pathogenesis of viral infection and disease.

Abbreviation: ATG: autophagy related; BCL2L13: BCL2 like 13; BNIP3L/NIX: BCL2 interacting protein 3 like; CL: cardiolipin; CSFV: classical swine fever virus; CVB: coxsackievirus B; DENV: dengue virus; DNM1L: dynamin 1 like; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; HPIV3: human parainfluenza virus 3; HSV-1: herpes simplex virus type 1; IMM: inner mitochondrial membrane; IAV: influenza A virus; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; LUBAC: linear ubiquitin assembly complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MAVS: mitochondrial antiviral signaling protein; MFF: mitochondria fission factor; NLRP3: NLR family pyrin domain containing 3; NDV: Newcastle disease virus; NR4A1: nuclear receptor subfamily 4 group A member 1; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; PHB2: prohibitin 2; PRRSV: porcine reproductive and respiratory syndrome virus; PRRs: pattern-recognition receptors; RLRs: RIG-I-like receptors; ROS: reactive oxygen species; RIPK2: receptor interacting serine/threonine kinase 2; SESN2: sestrin 2; SNAP29: synaptosome associated protein 29; STX17: syntaxin 17; TGEV: transmissible gastroenteritis virus; TUFM: Tu translation elongation factor, mitochondrial; TRAF2: TNF receptor associated factor 2; TRIM6: tripartite motif containing 6; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VZV: varicella-zoster virus  相似文献   


3.
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson’s disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein. A lack of structural information for Atg32 has hindered our understanding of the molecular mechanisms of mitophagy initiation. To gain new structural insight into Atg32, we have identified the location of a structured domain within the cytosolic region of Atg32 and completed the backbone and side chain resonance assignments for this domain.  相似文献   

4.
Introduction: Mitochondria play important roles in regulating multiple biological processes and signalling pathways in eukaryotic cells, and mitochondrial dysfunction may result in a wide range of serious diseases, including cancer. With improvements in the identification of mitochondrial proteins, mitochondrial proteomics has made great achievements. In particular, this approach has been widely used to compare tumour cells at different stages of malignancy. Therefore, there is an urgent need to identify and characterize the function of mitochondrial proteins in cancer progression and to determine the involved mechanisms.

Areas covered: We provide an overview of recent progress related to mitochondrial proteomics in cancer and the application of comparative mitochondrial proteomics in various biological processes, including apoptosis, necroptosis, autophagy and metastasis, as well as clinical progress in cancer. Proteomics-related reports were found using PubMed and Google Scholar databases.

Expert commentary: Understanding both post-translational modification and post-translational processing is important in the comprehensive characterization of protein function. The application of comparative mitochondrial proteomics to investigate clinical samples and cancer cells will contribute to our understanding of the molecular interplay of mitochondrial proteins in the development of cancer. This approach will mine more biomarkers for diagnosis and prognosis and improve therapeutic outcomes among cancer patients.  相似文献   


5.
Context: Yes-associated protein (Yap) has been linked to several cardiovascular disorders, but the role of this protein in septic cardiomyocytes is not fully understood.

Objective: The aim of our study was to explore the influence of Yap in septic cardiomyopathy in vivo and in vitro.

Materials and methods: In the current study, Yap transgenic mice and Yap adenovirus-mediated gain-of-function assays were used in an LPS-established septic cardiomyopathy model. Mitochondrial function and mitochondrial fission were determined through western blotting, immunofluorescence analysis and ELISA.

Results: Our results demonstrated that Yap expression was downregulated by LPS, whereas Yap overexpression sustained cardiac function and attenuated cardiomyocyte death. The functional exploration revealed that LPS treatment induced cardiomyocyte mitochondrial stress, as manifested by mitochondrial superoxide overproduction, cardiomyocyte ATP deprivation, and caspase-9 apoptosis activation. Furthermore, we demonstrated that LPS-mediated mitochondrial damage was controlled by mitochondrial fission. However, Yap overexpression reduced mitochondrial fission and therefore improved mitochondrial function. A molecular investigation revealed that Yap overexpression inhibited mitochondrial fission by reversing ERK activity, and the inhibition of the ERK pathway promoted DRP1 upregulation and thereby mediated mitochondrial fission activation in the presence of Yap overexpression.

Conclusions: Overall, our results suggest that the cause of septic cardiomyopathy appears to be connected with Yap downregulation. The overexpression of Yap can attenuate myocardial inflammation injury through the reduction of DRP1-related mitochondrial fission in an ERK pathway activation-dependent manner.  相似文献   


6.
7.
PTEN plays an important role in tumor suppression, and PTEN family members are involved in multiple biological processes in various subcellular locations. Here we report that PTENα, the first identified PTEN isoform, regulates mitophagy through promotion of PARK2 recruitment to damaged mitochondria. We show that PTENα-deficient mice exhibit accumulation of cardiac mitochondria with structural and functional abnormalities, and PTENα-deficient mouse hearts are more susceptible to injury induced by isoprenaline and ischemia-reperfusion. Mitochondrial clearance by mitophagy is also impaired in PTENα-deficient cardiomyocytes. In addition, we found PTENα physically interacts with the E3 ubiquitin ligase PRKN, which is an important mediator of mitophagy. PTENα binds PRKN through the membrane binding helix in its N-terminus, and promotes PRKN mitochondrial translocation through enhancing PRKN self-association in a phosphatase-independent manner. Loss of PTENα compromises mitochondrial translocation of PRKN and resultant mitophagy following mitochondrial depolarization. We propose that PTENα functions as a mitochondrial quality controller that maintains mitochondrial function and cardiac homeostasis.

Abbreviations: BECN1 beclin 1; CCCP carbonyl cyanide m-chlorophenylhydrazone; FBXO7 F-box protein 7; FS fraction shortening; HSPA1L heat shock protein family A (Hsp70) member 1 like; HW: BW heart weight:body weight ratio; I-R ischemia-reperfusion; ISO isoprenaline; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; MBH membrane binding helix; MFN1 mitofusin 1; MFN2 mitofusin 2; Nam nicotinamide; TMRM tetramethylrhodamine ethyl ester; WGA wheat germ agglutinin  相似文献   


8.
Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy.

Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer’s Disease, PD; Parkinson’s Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins  相似文献   


9.
Context: Epidermal cells play an important role in regulating the regeneration of skin after burns and wounds.

Objective: The aim of our study is to explore the role of Tanshinone IIA (Tan IIA) in the apoptosis of epidermal HaCaT cells induced by H2O2, with a focus on mitochondrial homeostasis and inverted formin-2 (INF2).

Materials and methods: Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded INF2 was transfected into HaCaT cells to overexpress INF2 in the presence of Tan IIA treatment. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence and western blotting.

Results: Oxidative stress promoted the death of HaCaT cells and this effect could be reversed by Tan IIA. At the molecular levels, Tan IIA treatment sustained mitochondrial energy metabolism, repressed mitochondrial ROS generation, stabilized mitochondrial potential, and blocked the mitochondrial apoptotic pathway. Furthermore, we demonstrated that Tan IIA modulated mitochondrial homeostasis via affecting INF2-related mitochondrial stress. Overexpression of INF2 could abolish the protective effects of Tan IIA on HaCaT cells viability and mitochondrial function. Besides, we also reported that Tan IIA regulated INF2 expression via the ERK pathway; inhibition of this pathway abrogated the beneficial effects of Tan IIA on HaCaT cells survival and mitochondrial homeostasis.

Conclusions: Overall, our results indicated that oxidative stress-mediated HaCaT cells apoptosis could be reversed by Tan IIA treatment via reducing INF2-related mitochondrial stress in a manner dependent on the ERK signaling pathway.  相似文献   


10.
11.
The epidermal growth factor receptor (EGFR) is amplified or mutated in various human epithelial tumors. Its expression and activation leads to cell proliferation, differentiation, and survival. Consistently, EGFR amplification or expression of EGFR variant 3 (EGFRvIII) is associated with resistance to conventional cancer therapy through activation of pro-survival signaling and DNA-repair mechanisms. EGFR targeting has successfully been exploited as strategy to increase treatment efficacy. Nevertheless, these targeting strategies have only been proven effective in a limited percentage of human tumors.

Recent knowledge indicates that EGFR deregulated tumors display differences in autophagy and dependence on autophagy for growth and survival and the use of autophagy to increase resistance to EGFR-targeting drugs. In this review the dependency on autophagy and its role in mediating resistance to EGFR-targeting agents will be discussed. Considering the current knowledge, autophagy inhibition could provide a novel strategy to enhance therapy efficacy in treatment of EGFR deregulated tumors.  相似文献   


12.
Objectives: Reactive oxygen species-mediated cell death contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. We recently showed that mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems.

Methods: In the present study, we demonstrated that H2O2-induced apoptosis and hypertrophy of H9c2 cardiomyoblasts was markedly exacerbated by small interfering RNA (siRNA) specific for IDH2.

Results: Attenuated IDH2 expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. MitoTEMPO, a mitochondria-targeted antioxidant, efficiently suppressed increased caspase-3 activity, increased cell size, and depletion of cellular GSH levels in IDH2 siRNA-transfected cells that were treated with H2O2.

Discussion: These results indicated that the disruption of cellular redox balance might be responsible for the enhanced H2O2-induced apoptosis and hypertrophy of cultured cardiomyocytes by the attenuated IDH2 expression.  相似文献   


13.
Capsule: During 1928–2016, initiation of egg-laying advanced in two wader species, remained unchanged in one, and was delayed in one species. The changes across years and variation among species can be explained by climatic variables and differences in migratory strategies.

Aims: To document possible changes in initiation of egg-laying in common Danish wader species since the early part of the 20th century and seek possible correlations between egg-laying, timing of arrival and environmental factors.

Methods: Annual records of the first eggs and chicks found on the scientific reserve of Tipperne in western Denmark 1928–2016 were analysed using linear regression to determine patterns in timing of egg-laying, pre-breeding length and influence of climate factors.

Results: Two short/medium-distance migrant wader species, Northern Lapwing Vanellus vanellus and Common Redshank Tringa totanus advanced breeding initiation by about one week, with winter North Atlantic oscillation Index and spring temperature as important predictors. By contrast, two long-distance migrants, Black-tailed Godwit Limosa limosa and Ruff Calidris pugnax, did not advance egg-laying, and Ruff actually delaying it. As a result, the pre-laying period was significantly prolonged in both Black-tailed Godwit (21 days) and Ruff (52 days), while there was no significant change for Common Redshank.

Conclusion: Long-distance migrants are able to adjust spring arrival but unlike short/medium-distance migrants, do not necessarily adjust breeding initiation.  相似文献   


14.
15.
Context: Various processes including inflammation and endothelial dysfunction have been implicated in the pathogenesis of cardioembolic (CE) strokes.

Objective: To review the evidence and investigate the association between immune-inflammatory biomarkers and CE strokes versus other stroke subtypes.

Methods: We systematically reviewed the literature (sources: MEDLINE, web-based register http://stroke-biomarkers.com, reference lists) with quality assessment and meta-analysis of selected articles.

Results: The most consistent association was found between C-reactive protein (CRP) and CE strokes when compared to other stroke subtypes (standardized mean difference 0.223 (0.116, 0.343); p?<?0.001)

Conclusions: Our findings confirm a possible association between selected inflammatory biomarkers and CE stroke.  相似文献   


16.
Objectives: This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised.

Background: Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years.

Methods: We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes.

Results: UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography.

Conclusions: To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.  相似文献   


17.
Context: Polymorphisms of IL-32 related closely to tumoregenesis.

Materials and methods: Two IL-32 polymorphisms (rs12934561 and rs28372698) and mRNA expression were conducted by SNP genotype assay and real-time PCR in 423 lung cancer patients and 437 controls.

Results: T allele of rs28372698 associated significantly with poor prognosis in moderate and well-differentiated lung cancer patients. TT genotype of rs12934561 related closely to poor survival status in squamous carcinoma. IL-32 mRNA expression decreased in lung cancer.

Discussion and conclusion: Our study indicates the importance of IL-32 polymorphism and mRNA expression in susceptibility and influence of survival status in lung cancer.  相似文献   


18.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   

19.
Background: Understanding how factors related to environment and geographical distance explain community variation allows insights about how ecological niche and neutral processes control tropical community assembly.

Aims: Quantify how variation in regional tree community richness and composition in a humid tropical forest across a mountain chain are related to niche and putative neutral processes.

Methods: We used a variation partitioning routine based on Redundancy Analysis to model tropical tree community richness and composition within three distinct elevation belts, as a function of environment and spatial structure, using data from 32 studies in the Serra do Mar Range, south-eastern Brazil.

Results: Environmental effects were greater than spatial structure effects to explain community variation in the three elevation belts. There was a trend of decreasing spatial structure effects while environmental effects remained constant from lower to higher elevations. Patterns were congruent for species richness and composition.

Conclusions: We suggest that on tropical mountains, niche-related processes are equally relevant for tropical forest community assembly at all elevations, while neutral processes become weaker towards higher elevations. Determining if this trend is a consequence of the greater heterogeneity of environmental conditions associated with higher elevations in tropical mountainous terrain remains an important area of research.  相似文献   


20.
Context: Carboxymethyl-lysine (CML) results from oxidative stress and has been linked to cardiovascular disease.

Objective: The objective of this study is to investigate the association between sleep-disordered breathing (SDB) – a source of oxidative stress – and CML.

Materials and methods: About 1002 participants in the Cardiovascular Health Study (CHS) were studied.

Results: Women with SDB had significantly higher CML concentration compared with those without SDB (OR?=?1.63, 95%CI?=?1.03–2.58, p?=?0.04). The association was not significant among men.

Discussion: SDB was associated with CML concentration among elderly women but not men in the Cardiovascular Health Study.

Conclusion: Accumulation of CML may be an adverse health consequence of SDB  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号