首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The reproductive activity of goats bred in temperate latitude follows a seasonal pattern, influenced by annual variation in day length. Daily variation in pineal melatonin secretion is the neuroendocrine signal recognized by animals through the link between this hormone and melatonin receptor 1a (MTNR1A). A total of 345 goats of different breeds (225 Sarda, 30 Saanen, 30 Chamois Coloured, 30 Maltese and 30 Nubian) with a kidding period in October-December or January-March were analysed to verify if a link exists between the structure of the receptor gene and reproductive activity. The main part of exon II of MTNR1A gene was amplified by PCR and then digested with MnlI and RsaI to prove the presence of restriction sites. Sequencing of 20 cloned samples and 20 purified samples permitted comparison with previously published sequences. No polymorphism was found using MnlI enzyme, as all 345 samples showed the cleavage site in position 605 and all the goats were MM genotype. However, using RsaI enzyme, some Sarda goats, showed a polymorphic site in position 53. Nine Sarda goats were R/r genotype, lacking this cleavage site only in one allele, while the other animals, both Sarda and the other breeds, presented the cleavage site in both the alleles and were thus R/R genotype. No r/r genotype was found in any of the breeds. In Sarda goats the allelic frequency was 0.98 for R allele and 0.02 for r allele; genotypic frequency was 96.00% for R/R genotype and 4.00% for R/r genotype. A strong link emerged from statistical analysis (P<0.001) between R/r genotype and reproductive activity, which was strongly influenced by photoperiod. Sequencing indicated six nucleotide changes that did not induce any amino acid change. Data showed that polymorphism was present and that it influences reproductive activity only in the Sarda breed.  相似文献   

5.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

6.
The pineal hormone melatonin activates two G-protein coupled receptors (MT1 and MT2) to regulate in part biological functions. The MT1 and MT2 melatonin receptors are heterogeneously distributed in the mammalian brain including humans. In the mouse, only a few reports have assessed the expression of the MT1 melatonin receptor expression using 2-iodomelatonin binding, in situ hybridization and/or polymerase chain reaction (PCR). Here, we described a transgenic mouse in which red fluorescence protein (RFP) is expressed under the control of the endogenous MT1 promoter, by inserting RFP cDNA at the start codon of MTNR1a gene within a bacterial artificial chromosome (BAC) and expressing this construct as a transgene. The expression of RFP in the brain of this mouse was examined either directly under a fluorescent microscope or immunohistochemically using an antibody against RFP (RFP-MT1). RFP-MT1 expression was observed in many brain regions including the subcommissural organ, parts of the ependyma lining the lateral and third ventricles, the aqueduct, the hippocampus, the cerebellum, the pars tuberalis, the habenula and the habenula commissure. This RFP-MT1 transgenic model provides a unique tool for studying the distribution of the MT1 receptor in the brain of mice, its cell-specific expression and its function in vivo.  相似文献   

7.
In the present study the melatonin receptor 1A gene (MTNR1A) was proposed to be a candidate gene for egg production in Yangzhou geese. A total of 210 goose blood samples were collected to investigate the association of the MTNR1A gene with the number of eggs produced. Using a direct sequencing method, a single nucleotide polymorphism (SNP; g.177G>C) was detected in the 5? regulatory region of the MTNR1A gene (Genbank ss1985399687). Two alleles (G and C) and three genotypes were identified. Association analysis results showed that the g.177G>C SNP significantly affected the level of egg production within a 34‐week egg‐laying period (< 0.05). Furthermore, the geese with the GG genotype produced significantly more eggs compared to the geese with the CC genotype. Quantitative real‐time PCR analysis showed that the MTNR1A gene was highly expressed in small intestine, granulosa cell and ovary compared to other examined tissues. In addition, the mRNA expression level of MTNR1A in ovary indicated that significantly higher expression levels were recorded for geese with the GG genotype compared to those with the CC genotype. Moreover, a luciferase reporter assay showed that the CC genotype had significantly lower promoter activity than did GG. These results suggest that the identified SNP in the MTNR1A gene may influence the number of eggs produced and mRNA expression levels in Yangzhou geese and could be considered as a useful molecular marker in goose selection and improvement, especially for egg production.  相似文献   

8.
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.  相似文献   

9.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

10.
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.  相似文献   

11.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

12.
《Autophagy》2013,9(1):144-154
SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCAA53T inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.  相似文献   

13.
During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.  相似文献   

14.
15.
Background: Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment.Methods: Western blotting, RT-qPCR and immunohistochemistry were used to detect the expression of melatonin membrane receptors (MTNR1A/B) and TNF-α in human NP tissues. In vitro, human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model was constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD.Results: The upregulation of TNF-α and downregulation of melatonin membrane receptors (MTNR1A/B) were observed in degenerative NP tissues. Then we demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α-impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α-induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells.Conclusions: Our results revealed that melatonin can reverse TNF-α-impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD.  相似文献   

16.
17.
Caspase recruitment domains‐containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C‐type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4‐depleted CARD9?/? and immunocompetent hosts. Card9 gene‐disrupted (CARD9?/?) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild‐type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9?/? macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin‐1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9?/? animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9?/? animals during PCP, T‐helper cell cytokines were normal in immunocompetent CARD9?/? animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.  相似文献   

18.
Mycobacterium tuberculosis (Mtb) manipulates multiple host defence pathways to survive and persist in host cells. Understanding Mtb–host cell interaction is crucial to develop an efficient means to control the disease. Here, we applied the Mtb proteome chip, through separately interacting with H37Ra and H37Rv stimulated macrophage lysates, screened 283 Mtb differential proteins. Through primary screening, we focused on fatty acylCoA synthetase FadD13. Mtb FadD13 is a potential drug target, but its role in infection remains unclear. Deletion of FadD13 in Mtb reduced the production of proinflammatory cytokines IL‐1β, IL‐18, and IL‐6. Bimolecular fluorescence complementation and colocalization showed that the binding partner of FadD13 in macrophage was eEF1A1 (a translation elongation factor). Knockdown eEF1A1 expression in macrophage abrogated the promotion of proinflammatory cytokines induced by FadD13. In addition, ΔfadD13 mutant decreased the expression of the NF‐κB signalling pathway related proteins p50 and p65, so did the eEF1A1 knockdown macrophage infected with H37Rv. Meanwhile, we found that deletion of FadD13 reduced Mtb survival in macrophages during Mtb infection, and purified FadD13 proteins induced broken of macrophage membrane. Taken together, FadD13 is crucial for Mtb proliferation in macrophages, and it plays a key role in the production of proinflammatory cytokines during Mtb infection.  相似文献   

19.
The duration of nocturnal melatonin secretion reaches its minimum in summer, a physiological event that is likely related with the diminished sow fertility and delayed puberty typically observed in this season. Melatonin exerts its function by binding two different receptors named as MTNR1A and MTNR1B. Interestingly, the MTNR1A gene is located on a chromosome SSC17 region where QTL for prolificacy traits have been detected in previous studies. In this work, we have found a synonymous T162C polymorphism at exon 2 of the pig MTNR1A gene. An association analysis between this polymorphism and sow prolificacy in an Iberian ×  Meishan intercross was performed. The utilization of four statistical models of increasing complexity demonstrated that the MTNR1A gene has both additive and dominant effects on total number of born piglets (TNB) and number of piglets born alive (NBA). Additive effects were significant in summer (TNB, P < 0.01; NBA, P < 0.001), whereas dominant effects reached significance both in fall (TNB, P < 0.01; NBA, P < 0.05) and in winter (TNB, P < 0.001; NBA, P < 0.05). The seasonal variation observed for MTNR1A additive and dominant effects might be produced by the influence of photoperiod on the pattern and duration of melatonin secretion. These results illustrate that the complex interaction between genotype and environment can be an important source of phenotypic variation of reproductive traits.  相似文献   

20.

Background

One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene.

Methods

In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample.

Results

Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B.

Conclusions

Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential role in the pathophysiology of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号