首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The comparison of two methods based on online solid phase extraction-liquid chromatography with UV (SPE-LC-UV) or mass spectrometry detection (SPE-LC-MS/MS) for the simultaneous quantification of sulfamethoxazole (SMZ) and trimethoprim (TMP) is presented. The methods were validated and proved to be accurate. The analysis of standard samples for SMZ at concentrations of 0.5, 1.5, 25 and 50microg/mL demonstrated a relative standard deviation of less than 6% for both methods (n=18), while TMP samples at concentrations of 0.05, 0.15, 1.5 and 5.0microg/mL were analyzed with R.S.D. of less than 4% (n=18). The method with mass spectrometric detection was approximately six times more sensitive than the method with ultraviolet detection. The total run time for the SPE-LC-MS/MS was 2.5min per sample as opposed to 18.0min for the SPE-LC-UV method. The method with MS detection in comparison with UV detection proved to be more rugged and was successfully applied to pharmacokinetics studies.  相似文献   

2.
The applicability of a trypsin-based monolithic bioreactor coupled on-line with LC/MS/MS for rapid proteolytic digestion and protein identification is here described. Dilute samples are passed through the bioreactor for generation of proteolytic fragments in less than 10 min. After digestion and peptide separation, electrospray ionization tandem mass spectrometry is used to generate a peptide map and to identify proteolytic peptides by correlating their fragmentation spectra with amino acid sequences from a protein database. By digesting picomoles of proteins sufficient data from ESI and MS/MS were obtained to unambiguously identify proteins alone and in serum samples. This approach was also extended to locate mutation sites in beta-lactoglobulin A and B variants.  相似文献   

3.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.  相似文献   

4.
A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS system were optimized in an integrated approach to maximize the application range and minimize the method development time. The optimized generic SPE-LC-MS/MS protocol was evaluated for 11 drugs with different physicochemical properties. Good quantification for 10 out of 11 of the pharmaceuticals in serum or plasma could be readily achieved. The quantitative assays gave recoveries better than 95%, lower quantification limits of 0.2-2.0 ng/ml, acceptable precision and accuracy and good linearity over 2-4 orders of magnitude. Carry-over was determined to be in the range of 0.02-0.10%, without optimization.  相似文献   

5.
Analysis of the human serum proteome   总被引:1,自引:0,他引:1  
Changes in serum proteins that signal histopathological states, such as cancer, are useful diagnostic and prognostic biomarkers. Unfortunately, the large dynamic concentration range of proteins in serum makes it a challenging proteome to effectively characterize. Typically, methods to deplete highly abundant proteins to decrease this dynamic protein concentration range are employed, yet such depletion results in removal of important low abundant proteins. A multi-dimensional peptide separation strategy utilizing conventional separation techniques combined with tandem mass spectrometry (MS/MS) was employed for a proteome analysis of human serum. Serum proteins were digested with trypsin and resolved into 20 fractions by ampholyte-free liquid phase isoelectric focusing. These 20 peptide fractions were further fractionated by strong cation-exchange chromatography, each of which was analyzed by microcapillary reversed-phase liquid chromatography coupled online with MS/MS analysis. This investigation resulted in the identification of 1444 unique proteins in serum. Proteins from all functional classes, cellular localization, and abundance levels were identified. This study illustrates that a majority of lower abundance proteins identified in serum are present as secreted or shed species by cells as a result of signalling, necrosis, apoptosis, and hemolysis. These findings show that the protein content of serum is quite reflective of the overall profile of the human organism and a conventional multidimensional fractionation strategy combined with MS/MS is entirely capable of characterizing a significant fraction of the serum proteome. We have constructed a publicly available human serum proteomic database (http://bpp.nci.nih.gov) to provide a reference resource to facilitate future investigations of the vast archive of pathophysiological content in serum. These authors contributed equally to this work.  相似文献   

6.
Chlorpyrifos and cypermethrin are the most used insecticides in Taiwan. Exposure to both pesticides has been associated with reproductive and developmental health effects in humans and animals. This study describes an online solid-phase extraction coupled with liquid chromatography-heated electrospray ionization tandem mass spectrometry (online SPE-LC/HESI/MS/MS) method to analyze chlorpyrifos and cypermethrin in cord blood of pregnant women. Calibration curves showed good linearity (r2 > 0.998) for both pesticides within the range of 0.1-100 ppb. Limits of detection (LODs) were 0.01 and 0.05 ppb and recoveries in cord blood were 97.2 ± 4.8% and 93.5 ± 9.5% for chlorpyrifos and cypermethrin respectively. After analysis of 396 samples, the mean concentrations of chlorpyrifos and cypermethrin were 0.38 and 1.08 ppb respectively. These results demonstrate that LC/HESI/MS/MS is effective for the simultaneous analysis of chlorpyrifos and cypermethrin in cord blood with excellent sensitivity and specificity and may also be effective for high throughput assay in future epidemiology studies.  相似文献   

7.
A prototype linear octopole ion trap/ion mobility/tandem mass spectrometer has been coupled with a nanoflow liquid chromatography separation approach and used to separate and characterize a complicated peptide mixture from digestion of soluble proteins extracted from human urine. In this approach, two dimensions of separation (nanoflow liquid chromatography and ion mobility) are followed by collision induced dissociation (CID) and mass spectrometry (MS) analysis. From a preliminary analysis of the most intense CID-MS features in a part of the dataset, it is possible to assign 27 peptide ions which correspond to 13 proteins. The data contain many additional CID-MS features for less intense ions. A limited discussion of these features and their potential utility in identifying complicated peptide mixtures required for proteomics study is presented.  相似文献   

8.
In clinical and diagnostic proteomics, it is essential to develop a comprehensive and robust system for proteome analysis. Although multidimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems have been recently developed as powerful tools especially for identification of protein complexes, these systems still some drawbacks in their application to clinical research that requires an analysis of a large number of human samples. Therefore, in this study, we have constructed a technically simple and high throughput protein profiling system comprising a two-dimensional (2D)-LC/MS/MS system which integrates both a strong cation exchange (SCX) chromatography and a microLC/MS/MS system with micro-flowing reversed-phase chromatography. Using the microLC/MS/MS system as the second dimensional chromatography, SCX separation has been optimized as an off-line first dimensional peptide fractionation. To evaluate the performance of the constructed 2D-LC/MS/MS system, the results of detection and identification of proteins were compared using digests mixtures of 6 authentic proteins with those obtained using one-dimensional microLC/MS/MS system. The number of peptide fragments detected and the coverage of protein sequence were found to be more than double through the use of our newly built 2D-LC/MS/MS system. Furthermore, this multidimensional protein profiling system has been applied to plasma proteome in order to examine its feasibility for clinical proteomics. The experimental results revealed the identification of 174 proteins from one serum sample depleted HSA and IgG which corresponds to only 1 microL of plasma, and the total analysis run time was less than half a day, indicating a fairly high possibility of practicing clinical proteomics in a high throughput manner.  相似文献   

9.
Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.  相似文献   

10.
We describe and demonstrate a global strategy that extends the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements based upon the use of peptide "accurate mass tags" (AMTs) produced by global protein enzymatic digestion. The two-stage strategy exploits Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to validate peptide AMTs for a specific organism, tissue or cell type from "potential mass tags" identified using conventional tandem mass spectrometry (MS/MS) methods, providing greater confidence in identifications as well as the basis for subsequent measurements without the need for MS/MS, and thus with greater sensitivity and increased throughput. A single high resolution capillary liquid chromatography separation combined with high sensitivity, high resolution and accurate FT-ICR measurements has been shown capable of characterizing peptide mixtures of significantly more than 10(5) components with mass accuracies of < 1 ppm, sufficient for broad protein identification using AMTs. Other attractions of the approach include the broad and relatively unbiased proteome coverage, the capability for exploiting stable isotope labeling methods to realize high precision for relative protein abundance measurements, and the projected potential for study of mammalian proteomes when combined with additional sample fractionation. Using this strategy, in our first application we have been able to identify AMTs for >60% of the potentially expressed proteins in the organism Deinococcus radiodurans.  相似文献   

11.
The ability to acquire structurally informative daughter ion spectra for individual peptides undergoing separation and analysis by continuous flow fast atom bombardment (CF FAB) is demonstrated. To illustrate the potential of this methodology, tryptic and chymotryptic digests of the 29-residue peptide glucagon were analyzed by CF FAB using mass spectrometric and tandem mass spectrometric detection in consecutive analyses. Daughter ion spectra were recorded using B/E linked scans for the major hydrolysis products observed by liquid chromatography/mass spectrometry. The peptide mixtures were separated by gradient capillary high-performance liquid chromatography with the FAB matrix being added post-column using a coaxial flow interface between the column and flow probe. The entire effluent (3 microl min(-1)) was sampled by the mass spectrometer. Results obtained using less than 300 pmol of digested glucagon indicated several advantages to tandem mass spectrometric detection including the ability to confirm identities for products of enzymatic digestion and the potential use of this method for tandem sequence analysis of peptide mixtures.  相似文献   

12.
We describe an integrated suite of algorithms and software for general accurate mass and time (AMT) tagging data analysis of mass spectrometry data. The AMT approach combines identifications from liquid chromatography (LC) tandem mass spectrometry (MS/MS) data with peptide accurate mass and retention time locations from high-resolution LC-MS data. Our workflow includes the traditional AMT approach, in which MS/MS identifications are located in external databases, as well as methods based on more recent hybrid instruments such as the LTQ-FT or Orbitrap, where MS/MS identifications are embedded with the MS data. We demonstrate our AMT workflow's utility for general data synthesis by combining data from two dissimilar biospecimens. Specifically, we demonstrate its use relevant to serum biomarker discovery by identifying which peptides sequenced by MS/MS analysis of tumor tissue may also be present in the plasma of tumor-bearing and control mice. The analysis workflow, referred to as msInspect/AMT, extends and combines existing open-source platforms for LC-MS/MS (CPAS) and LC-MS (msInspect) data analysis and is available in an unrestricted open-source distribution.  相似文献   

13.
A two-dimensional (2D) separation method was used to decrease sample complexity in analysis of tryptic peptides from glomerular membrane proteins by tandem mass spectrometry (MS/MS). The first dimension was carried out by electrocapture (EC), which fractionates peptides according to electrophoretic mobility. The second dimension was reverse-phase liquid chromatography (RP-LC), in which EC fractions were further separated and analyzed online by MS/MS. Using this methodology, we now identify 102 glomerular proteins (57 membrane proteins). Many peptides were possible to observe and select for MS/MS only using the 2D approach. Others were detectable in both one-dimensional (1D, without the EC step) and 2D experiments but were selectable for sequence analysis only from the 2D separations because the decrease in complexity then gives time for the mass analyzer to select the peptide and switch to the MS/MS mode. A minority of the peptides were detectable only in the 1D mode (presumably because of handling losses), but at the end this did not decrease the number of proteins identified by the 2D separation. After a database search, the combination of EC and RP-LC MS/MS versus a 1D RP-LC MS/MS separation resulted in a threefold increase in the number of proteins identified and improved the sequence coverage in the identifications, bringing our proteome-identified glomerular proteins to 282.  相似文献   

14.
Ion-exchange chromatography (IEC) is the most widely used method for amino acid analysis in physiological fluids because it provides excellent separation and reproducibility, with minimal sample preparation. The disadvantage, however, is the long analysis time needed to chromatographically resolve all the amino acids. To overcome this limitation, we evaluated a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method, which utilizes aTRAQ reagents, for amino acid analysis in urine. aTRAQ reagents tag the primary and secondary amino groups of amino acids. Internal standards for each amino acid are also labeled with a modified aTRAQ tag and are used for quantification. Separation and identification of the amino acids is achieved by liquid chromatography tandem mass spectrometry using retention times and mass transitions, unique to each amino acid, as identifiers. The run time, injection-to-injection, is 25 min, with all amino acids eluting within the first 12 min. This method has a limit of quantification (LOQ) of 1 μmol/L, and is linear up to 1000 μmol/L for most amino acids. The Coefficient of Variation (CV) was less than 20% for all amino acids throughout the linear range. Method comparison demonstrated concordance between IEC and LC-MS/MS and clinical performance was assessed by analysis of samples from patients with known conditions affecting urinary amino acid excretion. Reference intervals established for this method were also concordant with reference intervals obtained with IEC. Overall, aTRAQ reagents used in conjunction with LC-MS/MS should be considered a comparable alternative to IEC. The most attractive features of this methodology are the decreased run time and increased specificity.  相似文献   

15.
Progress is reviewed towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide 'accurate mass tags' (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from 'potential mass tags' tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10(5) components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements.Abbreviations: LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.  相似文献   

16.
Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.  相似文献   

17.
We present an optimized high-throughput method for the characterization of 2-aminobenzamide (2-AB)-labeled N-glycans from recombinant immunoglobulin G (rIgG). This method includes an optimized sample preparation protocol involving microwave-assisted deglycosylation in conjunction with an automated sample cleanup strategy and a rapid resolution reverse-phase high-performance liquid chromatography (RRRP-HPLC) separation of labeled N-glycans. The RRRP-HPLC method permits generation of a comprehensive glycan profile using fluorescence detection in 45 min. In addition, the profiling method is directly compatible with electrospray ionization mass spectrometry (ESI-MS), allowing immediate and sensitive characterization of the glycan moiety by intact MS and tandem MS (MS/MS) fragmentation. We conservatively estimate an efficiency gain of fourfold with respect to the throughput capabilities of this optimized method as compared with traditional protocols (overnight deglycosylation, sample cleanup by graphitized carbon or cellulose cartridge, high-pH anion exchange chromatography, fraction collection, and processing for matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] MS analysis) for a single sample. Even greater gains are achieved when processing of multiple samples is considered.  相似文献   

18.
Clinical proteomics requires the stable and reproducible analysis of a large number of human samples. We report a high-throughput comprehensive protein profiling system comprising a fully automated, on-line, two-dimensional microflow liquid chromatography/tandem mass spectrometry (2-D microLC-MS/MS) system for use in clinical proteomics. A linear ion-trap mass spectrometer (ITMS) also known as a 2-D ITMS instrument, which is characterized by high scan speed, was incorporated into the microLC-MS/MS system in order to obtain highly improved sensitivity and resolution in MS/MS acquisition. This system was used to evaluate bovine serum albumin and human 26S proteasome. Application of these high-throughput microLC conditions and the 2-D ITMS resulted in a 10-fold increase in sensitivity in protein identification. Additionally, peptide fragments from the 26S proteasome were identified three-fold more efficiently than by the conventional 3-D ITMS instrument. In this study, the 2-D microLC-MS/MS system that uses linear 2-D ITMS has been applied for the plasma proteome analysis of a few samples from healthy individuals and lung adenocarcinoma patients. Using the 2-D and 1-D microLC-MS/MS analyses, approximately 250 and 100 different proteins were detected, respectively, in each HSA- and IgG-depleted sample, which corresponds to only 0.4 microL of blood plasma. Automatic operation enabled the completion of a single run of the entire 1-D and 2-D microLC-MS/MS analyses within 11 h. Investigation of the data extracted from the protein identification datasets of both healthy and adenocarcinoma groups revealed that several of the group-specific proteins could be candidate protein disease markers expressed in the human blood plasma. Consequently, it was demonstrated that this high-throughput microLC-MS/MS protein profiling system would be practically applicable to the discovery of protein disease markers, which is the primary objective in clinical plasma proteome projects.  相似文献   

19.
Uric acid is an important diagnostic marker of catabolism of the purine nucleosides, and accurate measurements of serum uric acid are necessary for proper diagnosis of gout or renal disease appearance. A candidate reference method involving isotope dilution coupled with liquid chromatography/mass spectrometry (LC/MS) has been described. An isotopically labeled internal standard, [1,3-(15)N(2)] uric acid, was added to serum, followed by equilibration and protein removal clean up to prepare samples for liquid chromatography/mass spectrometry electrospray ionization (LC/MS-ESI) analyses. (M-H)(-) ions at m/z 167 and 169 for uric acid and its labeled internal standard were monitored for LC/MS. The accuracy of the measurement was evaluated by a comparison of results of this candidate reference method on lyophilized human serum reference materials for uric acid (Standard Reference Materials SRM909b) with the certified values determined by gas chromatography/mass spectrometry reference methods and by a recovery study for the added uric acid. The method performed well against the established reference method of ion-exchange followed by derivatization isotope dilution (ID) gas chromatography mass spectrometry (ID-GC/MS). The results of this method for uric acid agreed well with the certified values and were within 0.10%. The amounts of uric acid recovered and added were in good agreement for the three concentrations. This method was applied to determine uric acid in samples of frozen serum pools. Excellent precision was obtained with within-set CVs of 0.08-0.18% and between-set CVs of 0.02-0.07% for LC/MS analyses. Liquid chromatography/tandem mass spectrometry electrospray ionization (LC/MS/MS-ESI) analysis was also performed. The LC/MS and LC/MS/MS results were in very good agreement (within 0.14%). This LC/MS method, which demonstrates good accuracy and precision, and is in the speed of analysis without the need for a derivatization stage, qualifies as a candidate reference method. This method can be used as an alternative reference method to provide an accuracy base to which the routine methods can be compared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号