首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma levels of the eicosanoids PGE2, 6k-PGF1 alpha and TXB2 as well as platelet aggregation were determined in 12 healthy subjects, aging 23-50. It was our assumption that the parameters could be of use to monitor cancer patients, provided that the results of the determinations could be well reproduced and that the variation within a healthy population was small. In a group of laboratory employees (6 males and 6 females) blood samples were taken, 3 times, with a 2 week interval, under controlled conditions. Drug ingestion was recorded, and taken into account for the evaluation. The ranges of plasma eicosanoid, and of in vitro platelet aggregation values were large. The variation in both parameters was in large part due to intra-individual variation (based on the different values obtained in one subject). In part however, the variation could be traced to ingestion of non steroidal anti inflammatory drugs (NSAIDs). The following abbreviations were used: NSAID = non steroidal anti inflammatory drug, PGE2 = prostaglandin E2, 6k-PGF1 alpha = 6-ketoprostaglandin-F1 alpha, TXB2 = thromboxane B2, TXA2 = thromboxane A2, PGI2 = prostaglandin I2 = prostacyclin, RIA = radio immuno assay, ADP = adenosine diphosphate.  相似文献   

2.
The objective of this work was to characterize changes in platelet aggregability during postprandial hypertriglyceridemia with special emphasis on arachidonic acid metabolism. Ten healthy young men consumed 100 g fat after a fasting period of 12 hr. In-vitro platelet aggregation induced by ADP and collagen was measured at 0, 3, 5, and 9 hours after the fat intake. The major arachidonic acid metabolites, 12-hydroxyeicosatetraenoic acid (12-HETE), thromboxane A2 (TXA2), prostaglandin F2 alpha (PGF2a), and prostaglandin E2 (PGE2) produced during collagen-induced platelet activation were quantified by gas chromatography/mass spectrometry. A significant decrease in platelet aggregability induced by both ADP and collagen was detected during the postprandial hyperlipemia. No significant changes could be found in the prostanoid pattern of collagen activated platelets. There was no correlation between the degree of the inhibition of platelet aggregation and the relative or absolute increase of triglyceride-levels in the plasma during the postprandial hyperlipemia.  相似文献   

3.
The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.  相似文献   

4.
Platelet aggregation in platelet rich plasma (PRP) and whole blood was simultaneously studied in acute experiments on cats in hypocapnic conditions. ADP-induced aggregation increase was determined in PRP and whole blood. Contradictory results were obtained during platelet aggregation induced by collagen and arachidonic acid: increased aggregation in PRP and decreased aggregation in whole blood. The data obtained suggest that ADP is a risk factor for the onset of intravascular thrombosis.  相似文献   

5.
High concentrations of PGE(2) and PGF(2alpha) were identified by radio-immunoassay (RIA) and/or gas chromatography/mass spectrometry (GC/MS) in the hemolymph, salivary glands and saliva of the lone star tick Amblyomma americanum (L.). Binding studies indicated that PGE(2) was free and not bound to any proteins in the hemolymph. A small amount of 6-keto-PGF(1alpha) (breakdown product of PGI(2); prostacyclin) was also found in the salivary glands but not in the hemolymph or saliva. Neither PGD(2) nor PGA(2)/B(2) was detected in any tick material investigated. Although PGE(2) was found in the gut contents, only small amounts of label crossed the gut into the hemolymph during artificial feeding with labeled PGE(2), indicating that the high amounts of PGE(2) in hemolymph and salivary glands are not sequestered from the host blood meal. Isolated salivary glands and salivary gland homogenates demonstrated robust synthesis of PGE(2) at high concentrations of exogenous arachidonic acid. Synthesis by the salivary glands was monitored by measuring increasing PGE(2) with increasing arachidonic acid by RIA, GC/MS and labeled PGE(2) in the presence of labeled arachidonic acid. Synthesis was inhibited in a dose-dependent manner by indomethacin indicating that the cyclooxygenase synthesizing prostaglandins in ticks shares similarities to the enzyme found in mammals.  相似文献   

6.
Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.  相似文献   

7.
S-(1,2-Dicarboxyethyl)glutathione (DCE-GS) found in animal tissues or baker's yeast showed strong inhibitory effects on blood coagulation and platelet aggregation. The inhibitory effect of blood coagulation was almost the same as those of EDTA, oxalate, and citrate. DCE-GS did not show chelating activity. As for ADP- or thrombin-induced platelet aggregations, DCE-GS exerted a potent effect on the secondary aggregation, while it was less active in the primary aggregation. DCE-GS gave a distinct lag period in the time course of the secondary aggregation induced by collagen and inhibited most strongly the aggregation induced by arachidonic acid compared with those elicited by ADP, thrombin, and collagen. The peptide, however, did not inhibit the platelet aggregation induced by 12-O-tetradecanoylphorbol-13-acetate. Although both DCE-GS and EDTA inhibited the platelet aggregation which was triggered by ADP, their inhibitory manners were entirely different.  相似文献   

8.
To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann’s Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes.  相似文献   

9.
Treatment of blood coagulation factor Xa with insolubilized hexyl-agarose derivative of prostaglandin E1 (PGE1) results in the generation of two sulfhydryl groups in the protein molecule. The reduced factor Xa was found to be a potent inhibitor of platelet aggregation and thromboxane A2 synthesis induced by ADP. In contrast to the inhibition of thromboxane formation, the reduced factor Xa had no effect on the formation of PGE2 indicating that thromboxane synthetase might be selectively inhibited by the reduced factor Xa. Incubation with oxidized glutathione reversed the inhibitory activity of factor Xa previously exposed to the insolubilized hormone. Soluble PGE1 also reduces factor Xa, but more slowly than the insolubilized PGE1. PGE1 also exhibits reducing ability as tested with redox dyes. Reduction of factor Xa by dithiothreitol also transformed the coagulation factor into an inhibitor of platelet aggregation and thromboxane A2 formation. These experiments indicate that reduction of factor Xa leads to a reversible alteration of the molecule which inhibits platelet aggregation induced by ADP. This effect of reduced factor Xa is probably mediated through the inhibition of thromboxane A2 synthesis.  相似文献   

10.
Monocyte-derived dendritic cells (moDCs) are increasingly used in clinical settings to stimulate tumor immunity. Prostaglandin E2 (PGE2), which is a member of the eicosanoid family of oxygenated arachidonic acid derivatives generated through the action of cyclooxygenases (COXs), is frequently used to enhance the tumor necrosis factor-alpha-induced terminal maturation of moDCs. We show here that one effect of interleukin (IL)-4, which is used together with GM-CSF to generate moDCs, is the suppression of endogenous PGE2 production in moDCs. IL-4 inhibits the cytoplasmic form of phospholipase A2, the enzyme that specifically liberates arachidonic acid from membrane phospholipids. Although moDCs failed to mobilize endogenous arachidonic acid, they converted exogenous arachidonic acid into PGE2 in a COX-1- and COX-2-dependent fashion. IL-4-mediated suppression of PGE2 biosynthesis in human moDCs explains the previously reported maturation-enhancing effect of exogenous PGE2. The general suppression of eicosanoid biosynthesis may, however, limit the immunological efficacy of moDCs generated with IL-4.  相似文献   

11.
In order to investigate the production of eicosanoids in human endometrium, myometrium, leiomyoma, adenomyosis, normal ovary, non-endometrial cyst and endometrial cyst, slices of each tissue were incubated. 6-Keto-prostaglandin (PG) F1 alpha, thromboxane (TX) B2, PGF2 alpha and PGE2 concentrations in the incubation medium were measured by direct RIA. 6-Keto-PGF1 alpha production of adenomyosis was significantly higher than that of endometrium, myometrium and leiomyoma, especially in the menstrual phase. The production of eicosanoids in endometrial cyst was significantly higher than that of non-endometrial cyst and normal ovary. These results suggest that endometriosis is associated with increased eicosanoid production in vivo.  相似文献   

12.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

13.
Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 μM) in addition to different concentrations of serotonin (1-100 μM) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7 ± 1.3% to 40.9 ± 2.0% in the presence of 50 μM serotonin (p<0.05) and to 48.2 ± 2.0% with 100 μM serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9 ± 3.1% to 37.4 ± 3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents.  相似文献   

14.
Studies in vivo using inhibitors of eicosanoid synthesis suggested that prostaglandins may play a role in mediating tumor promotion in liver by agents such as phenobarbital (PB). However, it is not clear whether any stimulation of arachidonic acid metabolism/prostaglandin formation results directly from the action of tumor promoters on hepatocytes or indirectly from effects of promoters on Kupffer cells or other non-hepatocytes. Our laboratory has been utilizing relatively pure populations of rat hepatocytes under the defined conditions of primary cultures, to investigate growth-stimulatory actions of tumor promoters, an important element in the promotion stage of carcinogenesis. It has been shown that most if not all liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with factors such as EGF, insulin, and glucocorticoid. In the present study, we sought evidence for a role of prostaglandins (PGs) in the direct growth-stimulatory actions of tumor promoters on hepatocytes. PGE(2), PGF(2 alpha), and PGD(2) cause concentration-dependent stimulation of hepatocyte DNA synthesis, while arachidonic acid was without any effect. PGE(2) and PGF(2 alpha) required the presence of dexamethasone to exert significant effects. These PGs did not further augment the stimulatory effect of EGF. In contrast, PGD(2) stimulated DNA synthesis in the presence or absence of insulin, dexamethasone, or EGF. The effect of tumor promoters on arachidonic acid metabolism, as measured by [(3)H]arachidonic acid release and PGE(2) production, was determined. The phorbol ester TPA significantly increased [(3)H]arachidonic acid release as well as PGE(2) formation in hepatocytes in line with known effects in other cell types. However, liver tumor promoters phenobarbital (PB), alpha-hexachlorocycohexane (HCH), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and pregnenolone-16 alpha-carbonitrile (PCN) were without effects. Finally, inhibitors of arachidonic acid metabolism were tested for effects on the ability of TPA or liver tumor promoters to stimulate DNA synthesis by direct action on cultured hepatocytes. In all cases, lack of selective inhibition was observed. Taken together, the results show that while prostaglandins may directly stimulate DNA synthesis in hepatocytes, they are unlikely to mediate the direct growth-stimulatory actions of liver tumor promoters.  相似文献   

15.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

16.
Rabbits were given collagen and arachidonic acid intravenously. Blood pressure, platelet counts, plasma thromboxane-B2 (TXB2) and plasma 6-keto-prostaglandin F1 alpha, (6-keto-PGF1 alpha) were determined. Both thrombogenic agents, upon infusion of a lethal dose, caused thrombocytopenia, indicative of in vivo platelet aggregation and hypotension. These changes were associated with an increase in plasma levels of TXB2 and 6-keto-PGF1 alpha measured by radioimmunoassay (RIA). Pretreatment of rabbits with an aqueous extract of garlic (500 mgkg) provided protection from thrombocytopenia and hypotension. Thromboxane-B2 synthesis was significantly reduced in animals pretreated with garlic and then injected with a lethal dose of either collagen or arachidonic acid. The amount of TXB2 synthesized in these animals was not sufficient to induce thrombocytopenia or hypotension. All animals pretreated with garlic were well protected against the effects of collagen or arachidonate infusion, and no apparent symptoms were observed in these animals. These observations indicate that garlic may be beneficial in the prevention of thrombosis.  相似文献   

17.
川芎嗪对血小板聚集功能的影响及其作用机制的探讨   总被引:3,自引:0,他引:3  
川芎嗪是从中药川芎根中提取的一种生物碱。祖国医学对其活血化瘀作用早有所知。其化学结构已查明,并有合成制品在市上销售。 临床试用表明,川芎嗪治疗冠心病、心绞痛和急性闭塞性脑血管病有效。本文研究证明,川芎嗪在体外对由诱导剂二磷酸腺苷、胶原、凝血酶诱导所致的家兔血小板聚集有强烈抑制作用,同时也能抑制血小板丙二醛的生成。对外源性花生四烯酸诱导的血小板聚集则无抑制作用。川芎嗪能加强家兔动脉环保温液对花生四烯酸诱导的血小板聚集的抑制作用。 给家兔静脉注射大剂量花生四烯酸钠盐,可使动物突然死亡。但如预先注射川芎嗪,则可使动物得到一定保护。  相似文献   

18.
The microsomal fraction of dog aortas inhibited human platelet aggregation induced by arachidonic acid, ADP, or thrombin. When aortic microsomes were added to a preparation of irreversibly aggregated platelets, the aggregates dispersed after 4–6 minutes. The fact that aortic microsomes inhibit platelet aggregation induced by ADP suggests that its effect is probably on the cellular function of platelets and not in direct competition against thromboxane A2.  相似文献   

19.
Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA(2), TXA(2) mimetic (U-46619), TXB(2), PGH(2) mimetic (U-51605), PGD(2,) PGJ(2), and PGF(2α). It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE(1), PGE(2), 8-iso-PGF(2α), prostacyclin), leukotrienes (e.g. LTB(4), LTC(4), LTD(4), LTE(4)), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF(2α) and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA(2) antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg(39) and Gln(135) in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation.  相似文献   

20.
Aggregation of chicken thrombocytes was studied in whole blood using an electronic aggregometer. Serotonin (5-hydroxytryptamine, 5HT), arachidonic acid (AA) and collagen, but not adenosinediphosphate (ADP) induced aggregation. Prostaglandin (PG) endoperoxides were essential for arachidonic acid-induced aggregation, but were not involved in 5HT-induced aggregation, as indicated by inhibitory studies with indomethacin. Similar experiments indicated that biosynthesis of endogenous PG endoperoxides contributed to the aggregation induced by low concentrations of collagen, but was of little importance when high collagen doses were employed. PGE1 and PGE2 could abolish all types of aggregation studied, whereas prostacyclin (PGI2) and PGD2 were without any anti-aggregatory activity at 1 μg/ml. Between 1 and 100 ng/ml PGE1 and PGE2 inhibited arachidonic acid- and 5HT-induced aggregation dose-dependently.The lack of any hemostatic function of PGI2 in chickens was also indicated by the absence of biosynthesis of endogenous PGI2 in chicken aorta. PGI2 was assessed as anti-aggregating activity, released by aortic fragments stirred in rabbit platelet rich plasma. Still, the presence of chicken aortic tissue i chicken whole blood inhibited 5HT-, but not arachidonic acid-induced aggregation. This inhibition was not affected by pretreatment of the aortic fragments with indomethacin or pargyline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号