首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Respiratory syncytial (RS) virus infects the epithelium of the respiratory tract. We examined the replication and maturation of RS virus in two polarized epithelial cell lines, Vero C1008 and MDCK. Electron microscopy of RS virus-infected Vero C1008 cells revealed the presence of pleomorphic viral particles budding exclusively from the apical surface, often in clusters. The predominant type of particle was filamentous, 80 to 100 nm in diameter, and 4 to 8 microns in length, and evidence from filtration studies indicated that the filamentous particles were infectious. Cytopathology produced by RS virus infection of polarized Vero C1008 cells was minimal, and syncytia were not observed, consistent with the maintenance of tight junctions and the exclusively apical maturation of the virus. Infectivity assays with MDCK cells confirmed that in this cell line, RS virus was released into the apical medium but not into the basolateral medium. In addition, the majority of the RS virus transmembrane fusion glycoprotein on the cell surface was localized to the apical surface of the Vero C1008 cells. Taken together, these results demonstrate that RS virus matures at the apical surface of polarized epithelial cell lines.  相似文献   

2.
The structure and morphogenesis of respiratory syncytial (RS) virus particles in a green monkey kidney cell line (Vero) were examined. Infected cells contained dense intracytoplasmic inclusions composed of filamentous structures. In places where inclusion material was associated with membranes, structural modifications were induced. There was a thickening of the membrane and an addition of projections 12 to 15 nm in length. The same changes were most frequently observed after association of isolated filamentous structures with the cytoplasmic membrane. The budding-off process was clearly visualized. The diameter of mature virus particles varied between 90 and 130 nm and that of the internal component varied between 11 and 15 nm. The similarities between ultrastructural features of cells infected with RS virus and pneumonia virus of mice are pointed out. It is proposed that these two viruses should be classified together in a third subgroup of myxoviruses.  相似文献   

3.
A replicated sector-plating procedure was used to isolate 35 induced temperature-sensitive (ts) mutants and one spontaneous ts mutant from a wild-type stock of respiratory syncytial (RS) virus cloned from recent clinical material. Seven of these mutants were ts for plaque formation at 37 degrees C as well as at the restrictive temperature of 39 degrees C. The wild-type strain did not differ markedly from standard laboratory strains of RS virus. It was dependent on exogenous arginine (84 mug/ml) for optimal growth, and was not significantly inhibited by mitomycin C (10 mug/ml). It was sensitive to actinomycin D (2.5 mug/ml) during the early part of the growth phase. A characteristic focal cytopathic effect was obtained in BS-C-1 cells. Staining of infected monolayers by an indirect immunofluorescence procedure revealed a profusion of filamentous processes extending from the plasma membrane, and a similar modification of the surface of infected cells could be visualized by scanning electron microscopy. Filament production was inhibited when certain ts mutants were incubated at 39 degrees C, confirming the virus-specific nature of the phenomenon. Thirty-four of the mutants were classified into three groups by immunofluorescence. Complementation was observed in mixed infection with a single mutant from each group. Nuclear, as well as cytoplasmic, immunofluorescence was detected in RS virus-infected cells using a high-titer bovine anti-bovine RS virus serum. Visualization of nuclear antigen was dependent on the inhibition of cytoplasmic fluorescence obtained when ts mutants in groups I and III were incubated at restrictive temperature.  相似文献   

4.
Cytolytic T-lymphocyte (CTL) activity specific for respiratory syncytial (RS) virus was investigated after intranasal infection of mice with RS virus, after intraperitoneal infection of mice with a recombinant vaccinia virus expressing the F glycoprotein, and after intramuscular vaccination of mice with Formalin-inactivated RS virus or a chimeric glycoprotein, FG, expressed from a recombinant baculovirus. Spleen cell cultures from mice previously infected with live RS virus or the F-protein recombinant vaccinia virus had significant CTL activity after one cycle of in vitro restimulation with RS virus, and lytic activity was derived from a major histocompatibility complex-restricted, Lyt2.2+ (CD8+) subset. CTL activity was not restimulated in spleen cells from mice that received either the Formalin-inactivated RS virus or the purified glycoprotein, FG. The protein target structures for recognition by murine CD8+ CTL were identified by using target cells infected with recombinant vaccinia viruses that individually express seven structural proteins of RS virus. Quantitation of cytolytic activity against cells expressing each target structure suggested that 22K was the major target protein for CD8+ CTL, equivalent to recognition of cells infected with RS virus, followed by intermediate recognition of F or N, slight recognition of P, and no recognition of G, SH, or M. Repeated stimulation of murine CTL with RS virus resulted in outgrowth of CD4+ CTL which, over time, became the exclusive subset in culture. Murine CD4+ CTL were highly cytolytic for RS virus-infected cells, but they did not recognize target cells infected with any of the recombinant vaccinia viruses expressing the seven RS virus structural proteins. Finally, the CTL response in peripheral blood mononuclear cells of adult human volunteers was investigated. The detection of significant levels of RS virus-specific cytolytic activity in these cells was dependent on at least two restimulations with RS virus in vitro, and cytolytic activity was derived primarily from the CD4+ subset.  相似文献   

5.
CTXφ is a filamentous phage that encodes cholera toxin, one of the principal virulence factors of Vibrio cholerae . CTXφ is unusual among filamentous phages because it can either replicate as a plasmid or integrate into the V. cholerae chromosome at a specific site. The CTXφ genome has two regions, the 'core' and RS2. Integrated CTXφ is frequently flanked by an element known as RS1 which is related to RS2. The nucleotide sequences of RS2 and RS1 were determined. These related elements contain three nearly identical open reading frames (ORFs), which in RS2 were designated rstR , rstA2 and rstB2 . RS1 contains an additional ORF designated rstC . Functional analyses indicate that rstA2 is required for CTXφ replication and rstB2 is required for CTXφ integration. The amino terminus of RstR is similar to the amino termini of other phage-encoded repressors, and RstR represses the expression of rstA2 . Although genes with related functions are clustered in the genome of CTXφ in a way similar to those for other filamentous phages, the CTXφ RS2-encoded gene products mediating replication, integration and repression appear to be novel.  相似文献   

6.
The main virulence factor of Vibrio cholerae, the cholera toxin, is encoded by the ctxAB operon, which is contained in the genome of the lysogenic filamentous phage CTX phi. This phage transmits ctxAB genes between V. cholerae bacterial populations that express toxin-coregulated pilus (TCP), the CTX phi receptor. In investigating new forms of ctxAB transmission, we found that V. cholerae filamentous phage VGJ phi, which uses the mannose-sensitive hemagglutinin (MSHA) pilus as a receptor, transmits CTX phi or its satellite phage RS1 by an efficient and highly specific TCP-independent mechanism. This is a novel type of specialized transduction consisting in the site-specific cointegration of VGJ phi and CTX phi (or RS1) replicative forms to produce a single hybrid molecule, which generates a single-stranded DNA hybrid genome that is packaged into hybrid viral particles designated HybP phi (for the VGJ phi/CTX phi hybrid) and HybRS phi (for the VGJ phi/RS1 hybrid). The hybrid phages replicate by using the VGJ phi replicating functions and use the VGJ phi capsid, retaining the ability to infect via MSHA. The hybrid phages infect most tested strains more efficiently than CTX phi, even under in vitro optimal conditions for TCP expression. Infection and lysogenization with HybP phi revert the V. cholerae live attenuated vaccine strain 1333 to virulence. Our results reinforce that TCP is not indispensable for the acquisition of CTX phi. Thus, we discuss an alternative to the current accepted evolutionary model for the emergence of new toxigenic strains of V. cholerae and the importance of our findings for the development of an environmentally safer live attenuated cholera vaccine.  相似文献   

7.
1. Polymers of orosomucoid were produced in two molecular shapes, filamentous (;chain') and spherical (;ball'), by heating the sodium salt of the monomer in either water or high concentrations of sodium chloride. An ;intermediate' state containing both shapes in various proportions was found in preparations obtained by polymerizing orosomucoid in intermediate concentrations of sodium chloride. 2. The filamentous form of polymer was found to inhibit strongly the haemagglutination of some (;sensitive') strains but not of other (;insensitive') strains of influenza virus; the ;intermediate' form feebly inhibited haemagglutination by ;sensitive' strains. 3. The filamentous form agglutinated both ;sensitive' and ;insensitive' strains of virus; the other forms of polymer did not. It also inhibited multiplication of both ;sensitive' and ;insensitive' strains when inoculated into embryonated and de-embryonated eggs. 4. The ;intermediate' and spherical forms of the polymer had no effect on the virus multiplication. 5. Polymers of orosomucoid from which neuraminic acid had been split off had no detectable effect on influenza viruses.  相似文献   

8.
Propagation of cells infected with temperature-sensitive (ts) mutants of respiratory syncytial (RS) virus at nonpermissive temperature (39 degrees C) resulted in cytolytic, abortive, or persistent infection, depending on the mutant used to initiate infection. Five mutants from complementation group B produced cytolytic or abortive infections, whereas a single mutant (ts1) from group D and a noncomplbmenting mutant produced persistent infections. The persistently infected culture initiated by mutant ts1 (RS ts1/BS-C-1) has been maintained in serial culture for greater than 100 transfers, and infectious-center assays and immunofluorescent staining indicated that all cells harbored the RS virus genome. RS ts1/BS-C-1 cultures were resistant to superinfection by homologous and some heterologous viruses, and interferon-like activity against some heterologous viruses was present in the culture medium. Small amounts (0.002 to 0.2 PFU/cell) of infectious virus were present in the culture fluid, but autointerfering defective particles were not detected. This released virus formed small plaques and produced persistent infection of BS-C-1 cells at 37 degrees C. The RS ts1/BS-C-1 cells contained abundant RS virus antigen internally, but little at the surface, although the cells showed enhanced agglutinability by concanavalin A. Nucleocapsids and the 41,000-molecular-weight nucleoprotein were present in extracts of both nucleated and enucleated cells. No infectious RS virus was obtained by transfection of DNA from RS tsl/BS-C-1 cells to susceptible BS-C-1 or feline embryo cells under conditions allowing efficient transfection of a foamy virus proviral DNA. It was concluded that persistent infection was maintained in part by a non-ts variant of RS virus partially defective in maturation. The karyotype of the RS ts1/BS-C-1 culture differed from that of unifected cells.  相似文献   

9.
The ultrastructure is described for three types of virus-like particles (VLP 1–3) found in thin sections of the sheep blowfly Lucilia cuprina and, in the case of one type (VLP 1), in negatively stained preparations. VLP 1 appears to be morphologically similar to the particles of chronic bee paralysis virus and RS virus of Drosophila and causes a highly characteristic vesiculation of mitochondria. VLP 2 has two forms, spherical and filamentous; these are seen mainly in the gut where the filaments proliferate in the apical parts of the cells and resemble reovirus-like particles found in the gut of Musca domestica. The third type of particle (VLP 3) is intranuclear and seen only rarely. It is arrayed in quasi-crystalline inclusions which resemble inclusions reported in cells and tissues of Drosophila.  相似文献   

10.
11.
Respiratory syncytial virus (RSV) is an important human pathogen that can cause severe and life-threatening respiratory infections in infants, the elderly, and immunocompromised adults. RSV infection of HEp-2 cells induces the activation of RhoA, a small GTPase. We therefore asked whether RhoA signaling is important for RSV replication or syncytium formation. The treatment of HEp-2 cells with Clostridium botulinum C3, an enzyme that ADP-ribosylates and specifically inactivates RhoA, inhibited RSV-induced syncytium formation and cell-to-cell fusion, although similar levels of PFU were released into the medium and viral protein expression levels were equivalent. Treatment with another inhibitor of RhoA signaling, the Rho kinase inhibitor Y-27632, yielded similar results. Scanning electron microscopy of C3-treated infected cells showed reduced numbers of single blunted filaments, in contrast to the large clumps of long filaments in untreated infected cells. These data suggest that RhoA signaling is associated with filamentous virus morphology, cell-to-cell fusion, and syncytium formation but is dispensable for the efficient infection and production of infectious virus in vitro. Next, we developed a semiquantitative method to measure spherical and filamentous virus particles by using sucrose gradient velocity sedimentation. Fluorescence and transmission electron microscopy confirmed the separation of spherical and filamentous forms of infectious virus into two identifiable peaks. The C3 treatment of RSV-infected cells resulted in a shift to relatively more spherical virions than those from untreated cells. These data suggest that viral filamentous protuberances characteristic of RSV infection are associated with RhoA signaling, are important for filamentous virion morphology, and may play a role in initiating cell-to-cell fusion.  相似文献   

12.
Recombinant vaccinia virus vectors were constructed which expressed the major surface glycoprotein G of human respiratory syncytial (RS) virus. The biological activity of the G protein expressed from these vectors was assayed. Inoculation of rabbits with live recombinant virus induced high titers of antibody which specifically immunoprecipitated RS virus G protein and was capable of neutralizing RS virus infectivity. Immunization of mice by either the intranasal or the intraperitoneal route with recombinant virus that expressed only the G protein resulted in complete protection of the lower respiratory tract upon subsequent challenge with live RS virus.  相似文献   

13.
The construction and characterization of vaccinia virus recombinants carrying the nucleocapsid (N) protein gene of human respiratory syncytial (RS) virus are described. Recombinant viruses were constructed that contained the N gene oriented either positively or negatively with respect to the 7.5-kilodalton vaccinia virus promoter. In addition, a positively oriented recombinant was constructed that lacked an out-of-frame AUG codon in the 5'-terminal noncoding region. In HEp-2 cells, both positive-orientation recombinants induced the synthesis of a protein which comigrated with N protein and was precipitated by antisera to RS virus. Sera from mice immunized with these recombinants specifically precipitated the RS virus N protein. Analysis of mRNA and protein expressed from the recombinant N genes showed that deletion of the upstream AUG codon markedly improved the efficiency of protein synthesis. Mice were vaccinated with the high-expressing recombinant and subsequently challenged with live RS virus. The results of these experiments demonstrated that the immune response to N protein afforded a significant degree of protection against RS virus disease.  相似文献   

14.
Previous reports have established that vaccinia virus (VV) recombinants expressing G, F, or N protein of respiratory syncytial (RS) virus protect small animals against intranasal challenge with live RS virus. This work demonstrates that a variety of parameters affect the protection induced by recombinant viruses. The route of vaccination, the subtype of challenge virus, and the species used influenced the antibody titers and extent of protection. During these studies, observations were also made on the subclass of antibody generated, and pulmonary histopathological changes induced by challenge after vaccination were noted. The effect of route of inoculation on host response was examined by vaccinating mice intranasally, intraperitoneally, or by scarification with a recombinant VV expressing the RS virus G glycoprotein. Intranasal vaccination induced 25-fold-higher titers of antibody to RS virus in the lung than the intraperitoneal route did, but both routes resulted in complete suppression of virus replication after intranasal challenge 21 days after vaccination. Scarification was a less effective method of vaccination. The antibody induced by recombinant VV in mice was mostly immunoglobulin G2a (IgG2a) with some IgG2b. No antibody to RS virus was detected in the IgA, IgM, IgG1, or IgG3 subclass irrespective of the vaccination route. The G and F glycoproteins were shown to elicit similar subclasses of antibody. However, animals vaccinated with the G and F vectors differed strikingly in their response to challenge by heterologous virus. Mice or cotton rats vaccinated with recombinant VV carrying the G gene of RS virus were protected against challenge only with homologous subtype A virus. Vaccination with a recombinant VV expressing the F glycoprotein induced protection against both homologous and heterologous subtype B virus challenge. The protection induced in mice was greater than that detected in cotton rats, indicating that the host may also affect immunity. Finally, this report describes histological examination of mouse lungs after vaccination and challenge. Vaccinated mice that were subsequently challenged had significantly greater lung lesion scores than unvaccinated challenged mice. The lesions were primarily peribronchiolar and perivascular infiltrations of polymorphonuclear cells and lymphocytes. Further work will establish whether these pulmonary changes are a desirable immune response to virus invasion or a potential immunopathogenic hazard. The results have important implications for planning a strategy of vaccination against RS virus and emphasize potential dangers that may attend the use of recombinant VV as vaccines.  相似文献   

15.
The complement fixation test by the microtiter method was applied to the serological diagnosis of bovine respiratory syncytial (RS) virus infection. When used as complement fixing antigens, untreated infected cell culture fluid, fluorocarbon-treated, and ether-treated materials showed no differences in antigenicity among them. The complement fixing antigenicity of bovine RS virus appeared in bovine kidney and Vero cell cultures for the first time 4 days after inoculation. Both the infectivity and complement fixing antigenicity reached a maximum 6 days after inoculation. In detecting complement fixing antibody from infected cattle, the most outstanding specific reaction was obtained when 5% fresh normal calf serum had been added to the diluent of complement. Neutralizing and complement fixing antibodies were examined in serum samples from two cattle in the course of experimental infection. It was found that both antibodies turned to be positive 2 weeks after inoculation. There was a linear correlation between neutralizing and complement fixing antibody titers, when serum samples from 40 natural cases were tested in the acute and convalescent stages. In addition, common antigenicity was demonstrated between the virus of bovine origin and the Long strain of human RS virus by complement fixation test.  相似文献   

16.
以玉米 1 7个自交系和 1 0个杂交种为试材 ,在田间条件下研究了不同光强、不同叶位、不同生育期、不同源库比例和株间差异状态下的气孔阻力及其与光合 (PH)、蒸腾(TR)和叶片水分利用效率 (WUE)的关系 ,结果表明 ,不同自交系之间RS具有显著的差异 ,相差最大可达 2 .3倍以上 ;光照条件变弱、穗叶位差增加、生育期推延和源 /库比例改变等均可引起RS值的增加 ;在各种情况下导致RS变化的同时也引起TR和PH产生相应的变化 ,RS与TR、PH表现出显著或极显著的负相关 ,且相关系数rRS TR>rRS PH;RS与WUE的相关关系在不同的条件下表现出不稳定性  相似文献   

17.
Nucleocytoplasmic shuttling of the Rous sarcoma virus (RSV) Gag polyprotein is an integral step in virus particle assembly. A nuclear export signal (NES) was previously identified within the p10 domain of RSV Gag. Gag mutants containing deletions of the p10 NES or mutations of critical hydrophobic residues at positions 219, 222, 225, or 229 become trapped within the nucleus and exhibit defects in the efficiency of virus particle release. To investigate other potential roles for Gag nuclear trafficking in RSV replication, we created viruses bearing NES mutant Gag proteins. Viruses carrying p10 mutations produced low levels of particles, as anticipated, and those particles that were released were noninfectious. The p10 mutant viruses contained approximately normal amounts of Gag, Gag-Pol, and Env proteins and genomic viral RNA (vRNA), but several major structural defects were found. Thin-section transmission electron microscopy revealed that the mature particles appeared misshapen, while the viral cores were cylindrical, horseshoe-shaped, or fragmented, with some particles containing multiple small, electron-dense aggregates. Immature virus-like particles produced by the expression of Gag proteins bearing p10 mutations were also aberrant, with both spherical and tubular filamentous particles produced. Interestingly, the secondary structure of the encapsidated vRNA was altered; although dimeric vRNA was predominant, there was an additional high-molecular-weight fraction. Together, these results indicate that the p10 NES domain of Gag is critical for virus replication and that it plays overlapping roles required for the nuclear shuttling of Gag and for the maintenance of proper virion core morphology.  相似文献   

18.
我国呼吸道合胞病毒抗原亚型的初步探讨   总被引:4,自引:1,他引:3  
An analysis of subtypes of 9 respiratory syncytial (RS) viruses isolated from Guangzhou and Nanjing areas of china was carried out with eight Sweden RS-subtype specific monoclonal antibodies (MAbs) and 7 internal anti-RS MAbs. All these MAbs directed against respectively the large Glycoprotein (G), fusion protein (F), nucleoprotein (NP), and phosphoprotein (P) components of the prototype Long strain of RS virus. The patterns of the reactions of these MAbs to the nine isolated strains of RS virus were compared with indirect immunofluorescence assay (IFA), alkaline phosphoesterase-anti alkaline phosphoesterase (APAAP) enzyme-linked assay and Western blotting. The antigenic variations were founded among the strains of RS virus, and two subtypes allocated to the subtype A and B of RS virus by using the eight RS-subtype specific MAbs. Seven out of the 9 isolated strains of RS virus belonged to the subtype A, and two were being to the subtype B. The antigenic diversities were also founded within the same subtype, and the main pronounced difference were observed on the G glycoprotein by using the internal anti-RS MAbs. These findings are potentially important both for vaccine development and for the understanding of clinical and epidemiological characteristics of RS virus.  相似文献   

19.
Rod (RS) and coccoid (CS) rickettsia-like microorganisms were found in single and group forms in organs of the laboratory-reared adult ticksArgas (Persicarges) arboreus. RS are distributed in most organs but are mainly concentrated in the salivary glands, mid-gut, and testes. CS single forms were concentrated in the rectal sac, while the group forms were limited to Malpighian tubules and haemocytes of both sexes. The primary oocytes were heavily infected with both forms of CS. No RS or CS were detected in the muscles. Despite the structural differences between RS and CS, they are suggested to be different morphotypes of the same organism.  相似文献   

20.
The 63 kDa hordeivirus movement protein TGB1 of poa semilatent virus (the PSLV TGB1 protein) forms viral ribonucleoprotein for virus transport within a plant. It was found using the dynamic laser light scattering technique that the internal domain of TGB1 protein forms in vitro high molecular weight complexes. According to results of atomic force microscopy, a part of these complexes is represented by globules of different sizes, while another part consists of extended filamentous structures. Similar properties are also characteristic of the N-terminal half of the protein and are obviously due to its internal domain moiety. The data support the hypothesis that upon viral ribonucleoprotein complex formation, the N-terminal half of the PSLV TGB1 protein plays a structural role and exhibits the ability to form multimeric filamentous structures (the ability for self-assembly).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号