首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven strains of aerobic carbon monoxide-oxidizing bacteria (carboxydebacteria) when growing on CO as sole source of carbon and energy had doubling times which ranged from 12–42 h. The activity profiles obtained after discontinuous sucrose density gradient centrifugation indicated that the CO-oxidizing enzymes are soluble and the hydrogenases are membrane-bound in all strains examined. The CO-oxidizing enzymes of Pseudomonas carboxydohydrogena, Pseudomonas carboxydoflava, Comamonas compransoris, and the so far unidentified strains OM2, OM3, and OM4 had a molecular weight of 230,000; that of Achromobacter carboxydus amounted to 170,000. The molecular weights of the CO-oxidizing and H2-oxidizing enzymes turned out to be identical. The cell sonicates were shown to catalyze the oxidation of both CO and H2 with methylene blue, thionine, phenazine methosulfate, toluylene blue, dichlorophenolindophenol, cytochrome c or ferricyanide as electron acceptors. Methyl viologen, benzyl viologen, FAD+, FMN+, and NAD(P)+ were not reduced. The spectrum of electron acceptors was identical for all strains tested. Neither free formate, hydrogen nor oxygen gas were involved in the CO-oxidation reaction. Methylene blue was reduced by CO at a 1:1 molar ratio. The results indicate that CO-oxidation by carboxydobacteria is catalyzed by identical or similar enzymes and that the reaction obeys the equation CO+H2OCO2+2H++2e- as previously shown for Pseudomonas carboxydovorans.Dedicated to Otto Kandler remembering almost three decades of enjoyable cooperation  相似文献   

2.
Growth of Seliberia carboxydohydrogena was inhibited by CO at 10 to 40% (v/v), resulting in increased substrate utilization and enhanced synthesis of cytochromes and cyclopropane and saturated fatty acids. The bacteria showed increased formation of new membrane structures, with pronounced folding of their cell walls.  相似文献   

3.
4.
5.
Assimilation products of 14C-bicarbonate and carbon-14C oxide were studied in two carboxydobacteria Seliberia carboxydohydrogena and Achromobacter carboxydus which differed in their ability for chemolithoautrophous growth in the presence of hydrogen. The dynamics and composition of labeled products formed upon assimilation of 14C-bicarbonate in the presence of unlabeled carbon oxide by the two organisms, the composition of products formed upon assimilation of 14CO by suspensions of S. carboxydohydrogena Z-1062 during 5 minutes, and the dynamics and composition of labeled assimilates of A. carboxydus Z-1171 after incubation in the presence of 14CO, were found to be consistent with those expected in the action of the reductive pentose phosphate Calvin cycle. The similarity of products formed upon assimilation of 14CO2 and 14CO suggests that CO is first oxidized to CO2, and only is assimilated.  相似文献   

6.
7.
8.
9.
10.
Summary Wastewater from a dairy plant with an average BOD5 of 1060 mg/l and an average TKN of 109 mg/l was treated aerobically using three activated sludge reactors in series. With an overall retention time of 19.8 hrs, the final effluent contained 9 mg/l of BOD5 and 10 mg/l of TKN, corresponding to respective reductions of 99% and 91%.  相似文献   

11.
12.
Aerobic degradation of polychlorinated biphenyls   总被引:18,自引:0,他引:18  
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.  相似文献   

13.
 Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, α-pinene, γ-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and α-terpineol) under aerobic conditions at 23°C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter. Received: 27 November 1995/Received last revision: 15 March 1996/Accepted: 17 March 1996  相似文献   

14.
15.
Aerobic performance capacity in athletes   总被引:1,自引:0,他引:1  
Maximal oxygen uptake (max VO2) in leg and arm work, succinate dehydrogenase activity (SDH) and percentage of slow twitch fibers (%ST fibers) in M. vastus lateralis (VL), M. gastrocnemius c.l. (GL) and M. deltoideus (D) were studied in 89 athletes practising 11 different sport events. It was found that maximal oxygen uptake correlated positively with %ST fibers and SDH activity in M. VL. The SDH activity and %ST fibers in M. VL correlated also with one another. The results suggest that oxidative capacity of the muscles is not the limiting factor for maximal oxygen uptake. The role of the oxidative capacity of the muscles might be important during submaximal work of long duration and when a relatively small muscle mass is activated (long-distance running). MaxVO2 might be the most important determinant of performance when large muscle mass is activated during maximal work of a duration from several minutes up to 1 h (cross-country skiing).  相似文献   

16.
Aerobic Methylotrophic Bacteria as Phytosymbionts   总被引:1,自引:0,他引:1  
Trotsenko  Yu. A.  Ivanova  E. G.  Doronina  N. V. 《Microbiology》2001,70(6):623-632
This paper deals with the physiological, biochemical, and molecular genetic aspects of the interaction of aerobic methylotrophic bacteria with plants by means of phytohormones (such as cytokinins and auxins) and other physiologically active substances (vitamins, exopolysaccharides, bioprotectants, and others). An overview of the field and the prospects of research in the field of bacteria–plant interactions and the application of aerobic methylotrophs in plant biotechnology is discussed.  相似文献   

17.
Taxonomy of Aerobic Marine Eubacteria   总被引:31,自引:4,他引:31       下载免费PDF全文
Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are discussed.  相似文献   

18.
19.
Aerobic denitrification: a controversy revived   总被引:37,自引:0,他引:37  
During studies on the denitrifying mixotroph, Thiosphaera pantotropha, it has been found that this organism is capable of simultaneously utilizing nitrate and oxygen as terminal electron acceptors in respiration. This phenomenon, termed aerobic denitrification, has been found in cultures maintained at dissolved oxygen concentrations up to 90% of air saturation.The evidence for aerobic denitrification was obtained from a number of independant experiments. Denitrifying enzymes were present even in organisms growing aerobically without nitrate. Aerobic yields on acetate were higher (8.1 g protein/mol) without than with (6.0 g protein/mol) nitrate, while the anaerobic yield with nitrate was even lower (4 g protein/mol). The maximum specific growth rate of Tsa. pantotropha was higher (0.34 h-1) in the presence of both oxygen (>80% air saturation) and nitrate than in similar cultures not supplied with nitrate (0.27 h-1), indicating that the rate of electron transport to oxygen was limiting. This was confirmed by oxygen uptake experiments which showed that although the rate of respiration on acetate was not affected by nitrate, the total oxygen uptake was reduced in its presence. The original oxygen uptake could be restored by the addition of denitrification inhibitors.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

20.
Thermophiles are organisms that grow optimally above 50 degrees C and up to approximately 120 degrees C. These extreme conditions must have led to specific characteristics of the cellular components. In this paper we extensively analyze the types of respiratory complexes from thermophilic aerobic prokaryotes. The different membrane-bound complexes so far characterized are described, and the genomic data available for thermophilic archaea and bacteria are analyzed. It is observed that no specific characteristics can be associated to thermophilicity as the different types of complexes I-IV are present randomly in thermophilic aerobic organisms, as well as in mesophiles. Rather, the extensive genomic analyses indicate that the differences concerning the several complexes are related to the organism phylogeny, i.e., to evolution and lateral gene transfer events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号