首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.  相似文献   

5.
6.
7.
8.
9.
FoxO转录因子   总被引:3,自引:0,他引:3  
FoxO家族是转录调节因子 ,也是INS IGF 1信号通路中的关键分子。FoxO基因在进化上高度保守 ,其氨基酸序列中含有 3个高度保守PKB磷酸化基序。FoxO受PI3K PKB磷酸化级联通路的调节 ,其活性与磷酸化状态直接相关。FoxO对细胞增殖、细胞凋亡等生理过程有重要调节作用 ,并可能在免疫系统发育中对免疫细胞的凋亡及亚群间的平衡起一定调节作用。  相似文献   

10.
11.
Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.  相似文献   

12.
13.
Stem cell factor (SCF) delays differentiation and enhances the expansion of erythroid progenitors. Previously, we performed expression-profiling experiments to link signaling pathways to target genes using polysome-bound mRNA. SCF-induced phosphoinositide-3-kinase (PI3K) appeared to control polysome recruitment of specific mRNAs associated with neoplastic transformation. To evaluate the role of mRNA translation in the regulation of expansion versus differentiation of erythroid progenitors, we examined the function of the eukaryote initiation factor 4E (eIF4E) in these cells. SCF induced a rapid and complete phosphorylation of eIF4E-binding protein (4E-BP). Overexpression of eIF4E did not induce factor-independent growth but specifically impaired differentiation into mature erythrocytes. Overexpression of eIF4E rendered polysome recruitment of mRNAs with structured 5' untranslated regions largely independent of growth factor and resistant to the PI3K inhibitor LY294002. In addition, overexpression of eIF4E rendered progenitors insensitive to the differentiation-inducing effect of LY294002, indicating that control of mRNA translation is a major pathway downstream of PI3K in the regulation of progenitor expansion.  相似文献   

14.
15.
16.
17.
18.
19.
20.
高表达FoxO1抑制猪骨骼肌成肌细胞的分化   总被引:1,自引:0,他引:1  
FoxO1(Forkhead box O1)是调控肌肉生长、代谢和细胞分化的重要转录因子,但其在成肌细胞分化中的作用还不甚清楚。为了研究FoxO1对哺乳动物成肌细胞分化的影响,以原代培养的长白仔猪成肌细胞作为实验材料,用2%马血清诱导分化,采用实时荧光定量PCR、Western blotting和脂质体转染等方法检测FoxO1及早期和晚期生肌调节因子MyoD和myogenin在猪成肌细胞分化过程中的表达变化。结果显示,在猪成肌细胞分化过程中,FoxO1mRNA表达量显著增加,但总蛋白量变化不显著,其磷酸化水平显著上调。同时,高表达FoxO1的猪成肌细胞中,生肌调节因子MyoD和myogenin mRNA表达受到显著抑制,而MyoD蛋白变化不显著,myogenin却显著下调(P0.05)。以上结果表明,FoxO1能够推迟猪成肌细胞的分化时间并抑制分化;同时推测,FoxO1可能通过抑制生肌调节因子的表达控制骨骼肌纤维类型的终末分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号