首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulators of G-protein signaling (RGS) proteins down-regulate signaling by heterotrimeric G-proteins by accelerating GTP hydrolysis on the G alpha subunits. Palmitoylation, the reversible addition of palmitate to cysteine residues, occurs on several RGS proteins and is critical for their activity. For RGS16, mutation of Cys-2 and Cys-12 blocks its incorporation of [3H]palmitate and ability to turn-off Gi and Gq signaling and significantly inhibited its GTPase activating protein activity toward aG alpha subunit fused to the 5-hydroxytryptamine receptor 1A, but did not reduce its plasma membrane localization based on cell fractionation studies and immunoelectron microscopy. Palmitoylation can target proteins, including many signaling proteins, to membrane microdomains, called lipid rafts. A subpopulation of endogenous RGS16 in rat liver membranes and overexpressed RGS16 in COS cells, but not the nonpalmitoylated cysteine mutant of RGS16, localized to lipid rafts. However, disruption of lipid rafts by treatment with methyl-beta-cyclodextrin did not decrease the GTPase activating protein activity of RGS16. The lipid raft fractions were enriched in protein acyltransferase activity, and RGS16 incorporated [3H]palmitate into a peptide fragment containing Cys-98, a highly conserved cysteine within the RGS box. These results suggest that the amino-terminal palmitoylation of an RGS protein promotes its lipid raft targeting that allows palmitoylation of a poorly accessible cysteine residue that we show in the accompanying article (Osterhout, J. L., Waheed, A. A., Hiol, A., Ward, R. J., Davey, P. C., Nini, L., Wang, J., Milligan, G., Jones, T. L. Z., and Druey, K. M. (2003) J. Biol. Chem. 278, 19309-19316) was critical for RGS16 and RGS4 GAP activity.  相似文献   

2.
Palmitoylation is a posttranslational modification that regulates protein trafficking and stability. In this study we investigated whether the endosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins syntaxin 7 and syntaxin 8 are modified with palmitate. Using metabolic labeling and site-directed mutagenesis, we show that human syntaxins 7 and 8 are modified with palmitate through a thioester linkage. Palmitoylation is dependent upon cysteine 239 of human syntaxin 7 and cysteine 214 of syntaxin 8, residues that are located on the cytoplasmic face of the transmembrane domain (TMD). Palmitoylation of syntaxin 8 is minimally affected by the Golgi-disturbing agent brefeldin A (BFA), whereas BFA dramatically inhibits palmitoylation of syntaxin7. The differential effect of BFA suggests that palmitoylation of syntaxins 7 and 8 occurs in distinct subcellular compartments. Palmitoylation does not affect the rate of protein turnover of syntaxins 7 and 8 nor does it influence the steady-state localization of syntaxin 8 in late endosomes. Syntaxin 7 actively cycles between endosomes and the plasma membrane. Palmitoylation-defective syntaxin 7 is selectively retained on the plasma membrane, suggesting that palmitoylation is important for intercompartmental transport of syntaxin 7.  相似文献   

3.
A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co- expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng- CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and related nervous system cell adhesion molecules.  相似文献   

4.
The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.  相似文献   

5.
《The Journal of cell biology》1996,135(5):1355-1367
Neurofascin, NrCAM, L1, and NgCAM are a family of Ig/FNIII cell adhesion molecules that share ankyrin-binding activity in their cytoplasmic domains, and are candidates to form membrane-spanning complexes with members of the ankyrin family of spectrin-binding proteins in a variety of cellular contexts in the nervous system. Specialized forms of ankyrin, 270 kD and/or 480 kD ankyrinG are components of the membrane undercoat of axons at the node of Ranvier. This paper focuses on definition of the isoforms of ankyrin-binding cell adhesion molecules localized with ankyrinG at the nodal axon segment. The exon usage of two major forms of neurofascin was determined by isolation of full-length cDNAs and used to prepare isoform-specific antibodies. An isoform of neurofascin containing a mucin-like domain and lacking the third FNIII domain was concentrated at axon initial segments and colocalized at nodes of Ranvier with ankyrinG and the voltage-dependent sodium channel. An alternative form of neurofascin lacking the mucin-like domain and containing the third FNIII domain was present in unmyelinated axons. The antibody initially raised against neurofascin was used to screen a rat brain cDNA expression library. In addition to neurofascin, this screen yielded a clone with 80% sequence identity to NrCAM from chicken. The sequences of two full-length cDNAs are presented. NrCAM is most closely related to neurofascin among the other members of the L1/neurofascin/NgCAM family, with over 70% identity between cytoplasmic domains. NrCAM, visualized with antibodies specific for the ecto-domain, also was found to be coexpressed with neurofascin at nodes of Ranvier and at axon initial segments. This is the first characterization of defined neuronal cell adhesion molecules localized to axonal membranes at the node of Ranvier of myelinated axons.  相似文献   

6.
S G Coats  M A Booden  J E Buss 《Biochemistry》1999,38(39):12926-12934
H-Ras is >95% membrane-bound when modified by farnesyl and palmitate, but <10% membrane-bound if only farnesyl is present, implying that palmitate provides major support for membrane interaction. However the direct contribution of palmitate to H-Ras membrane interaction or the extent of its cooperation with farnesyl is unknown, because in the native protein the isoprenoid must be present before palmitate can be attached. To examine if palmitates can maintain H-Ras membrane association despite multiple cycles of turnover, a nonfarnesylated H-Ras(Cys186Ser) was constructed, with an N-terminal palmitoylation signal, derived from the GAP-43 protein. Although 40% of the GAP43:Ras(61Leu,186Ser) protein (G43:Ras61L) partitioned with membranes, the chimera had less than 10% of the transforming activity of fully lipidated H-Ras(61Leu) in NIH 3T3 cells. Poor focus formation was not due to incorrect targeting or gross structural changes, because G43:Ras61L localized specifically to plasma membranes and triggered differentiation of PC12 cells as potently as native H-Ras61L. Proteolytic digestion indicated that in G43:Ras61L both the N-terminal and the two remaining C-terminal cysteines of G43:Ras61L were palmitoylated. A mutant lacking all three C-terminal Cys residues had decreased membrane binding and differentiating activity. Therefore, even with correct targeting and palmitates at the C-terminus, G43:Ras61L was only partially active. These results indicate that although farnesyl and palmitate share responsibility for H-Ras membrane binding, each lipid also has distinct functions. Farnesyl may be important for signaling, especially transformation, while palmitates may provide potentially dynamic regulation of membrane binding.  相似文献   

7.
《The Journal of cell biology》1996,135(4):1059-1069
Neurofascin and NrCAM are two axon-associated transmembrane glycoproteins belonging to the L1 subgroup of the Ig superfamily. In this study, we have analyzed the interaction of both proteins using neurite outgrowth and binding assays. A neurofascin-Fc chimera was found to stimulate the outgrowth of tectal cells when immobilized on an inert surface but not as a soluble form using polylysine as substrate. Antibody blocking experiments demonstrate that neurite extension on immobilized neurofascin is mediated by NrCAM on the axonal surface. Under the reverse experimental conditions where NrCAM induces neurite extension, F11, and not neurofascin, serves as axonal receptor. Binding studies using transfected COS7 cells and immunoprecipitations reveal a direct interaction between neurofascin and NrCAM. This binding activity was mapped to the Ig domains within neurofascin. The neurofascin-NrCAM binding can be modulated by alternative splicing of specific stretches within neurofascin. These studies indicate that heterophilic interactions between Ig-like proteins implicated in axonal extension underlie a regulation by the neuron.  相似文献   

8.
The chick axon-associated surface glycoprotein neurofascin is implicated in axonal growth and fasciculation as revealed by antibody perturbation experiments. Here we report the complete cDNA sequence of neurofascin. It is composed of four structural elements: At the NH2 terminus neurofascin contains six Ig-like motifs of the C2 subcategory followed by four fibronectin type III (FNIII)-related repeats. Between the FNIII-like repeats and the plasma membrane spanning region neurofascin contains a domain 75-amino acid residues-long rich in proline, alanine and threonine which might be the target of extensive O-linked glycosylation. A transmembrane segment is followed by a 113-amino acid residues-long cytoplasmic domain. Sequence comparisons indicate that neurofascin is most closely related to chick Nr-CAM and forms with L1 (Ng-CAM) and Nr-CAM a subgroup within the vertebrate Ig superfamily. Sequencing of several overlapping cDNA probes reveals interesting heterogeneities throughout the neurofascin polypeptide. Genomic Southern blots analyzed with neurofascin cDNA clones suggest that neurofascin is encoded by a single gene and its pre-mRNA might be therefore alternatively spliced. Northern blot analysis with domain specific probes showed that neurofascin mRNAs of about 8.5 kb are expressed throughout development in embryonic brain but not in liver. Isolation of neurofascin by immunoaffinity chromatography results in several molecular mass components. To analyze their origin the amino-terminal sequences of several neurofascin components were determined. The NH2-terminal sequences of the 185, 160, and 110-135 kD components are all the same as the NH2 termini predicted by the cDNA sequence, whereas the other neurofascin components start with a sequence found in a putative alternatively spliced segment between the Ig- and FNIII-like part indicating that they are derived by proteolytic cleavage. A combination of enzymatic and chemical deglycosylation procedures and the analysis of peanut lectin binding reveals O- and N-linked carbohydrates on neurofascin components which might generate additional heterogeneity.  相似文献   

9.
Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents subsequent repalmitoylation.  相似文献   

10.
Protein palmitoylation represents an important mechanism governing the dynamic subcellular localization of many signaling proteins. Palmitoylation of endothelial nitric-oxide synthase (eNOS) promotes its targeting to plasmalemmal caveolae; agonist-promoted depalmitoylation leads to eNOS translocation. Depalmitoylation and translocation of eNOS modulate the agonist response, but the pathways that regulate eNOS palmitoylation and depalmitoylation are poorly understood. We now show that the newly characterized acyl-protein thioesterase 1 (APT1) regulates eNOS depalmitoylation. Immunoblot analyses indicate that APT1 is expressed in bovine aortic endothelial cells, which express eNOS. APT1 overexpression appears to accelerate the depalmitoylation of eNOS in COS-7 cells cotransfected with eNOS and APT1 cDNAs. Additionally, purified recombinant APT1 depalmitoylates eNOS assayed in biological membranes isolated from endothelial cells biosynthetically labeled with [(3)H]palmitate or COS-7 cells transfected with eNOS cDNA. More important, the APT1-catalyzed depalmitoylation of palmitoyl-eNOS is potentiated by Ca(2+)-calmodulin (CaM), a key allosteric activator of eNOS. In contrast, APT1-catalyzed depalmitoylation of the G protein Galpha(s) is unaffected by Ca(2+)-CaM. Furthermore, caveolin, a palmitoylated membrane protein, does not appear to be a substrate for APT1. Taken together, these results support a role for APT1 in the regulation of eNOS depalmitoylation and suggest that Ca(2+)-CaM activation of eNOS renders the enzyme more susceptible to APT1-catalyzed depalmitoylation.  相似文献   

11.
Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase (MBOAT) family, catalyses the covalent attachment of palmitate to the N-terminus of Hedgehog proteins. Palmitoylation is a post-translational modification essential for Hedgehog signalling. This review explores the mechanisms involved in Hhat acyltransferase enzymatic activity, similarities and differences between Hhat and other MBOAT enzymes, and the role of palmitoylation in Hedgehog signalling. In vitro and cell-based assays for Hhat activity have been developed, and residues within Hhat and Hedgehog essential for palmitoylation have been identified. In cells, Hhat promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where Shh palmitoylation occurs. Palmitoylation is required for efficient delivery of secreted Hedgehog to its receptor Patched1, as well as for the deactivation of Patched1, which initiates the downstream Hedgehog signalling pathway. While Hhat loss is lethal during embryogenesis, mutations in Hhat have been linked to disease states or abnormalities in mice and humans. In adults, aberrant re-expression of Hedgehog ligands promotes tumorigenesis in an Hhat-dependent manner in a variety of different cancers, including pancreatic, breast and lung. Targeting hedgehog palmitoylation by inhibition of Hhat is thus a promising, potential intervention in human disease.  相似文献   

12.
Neurofascin belongs to the L1 subgroup of the immunoglobulin superfamily of cell adhesion molecules and is implicated in axonal growth and fasciculation. We used yeast two-hybrid screening to identify proteins that interact with neurofascin intracellularly and therefore might link it to trafficking, spatial targeting, or signaling pathways. Here, we demonstrate that rat syntenin-1, previously published as syntenin, mda-9, or TACIP18 in human, is a neurofascin-binding protein that exhibits a wide-spread tissue expression pattern with a relative maximum in brain. Syntenin-1 was found not to interact with other vertebrate members of the L1 subgroup such as L1 itself or NrCAM. We confirmed the specificity of the neurofascin-syntenin-1 interaction by ligand-overlay assay, surface plasmon resonance analysis, and colocalization of both proteins in heterologous cells. The COOH terminus of neurofascin was mapped to interact with the second PDZ domain of syntenin-1. Furthermore, we isolated syntenin-2 that may be expressed in two isoforms. Despite their high sequence similarity to syntenin-1, syntenin-2alpha, which interacts with neurexin I, and syntenin-2beta do not bind to neurofascin or several other transmembrane proteins that are binding partners of syntenin-1. Finally, we report that syntenin-1 and -2 both form homodimers and can interact with each other.  相似文献   

13.
Lipid modifications such as palmitoylation or myristoylation target intracellular proteins to cell membranes. Secreted ligands of the Hedgehog and Wnt families are also palmitoylated; this modification, which requires the related transmembrane acyltransferases Rasp and Porcupine, can enhance their secretion, transport, or activity. We show here that rasp is also essential for the developmental functions of Spitz, a ligand for the Drosophila epidermal growth factor receptor (EGFR). In cultured cells, Rasp promotes palmitate addition to the N-terminal cysteine residue of Spitz, and this cysteine is required for Spitz activity in vivo. Palmitoylation reduces Spitz secretion and enhances its plasma membrane association, but does not alter its ability to activate the EGFR in vitro. In vivo, overexpressed unpalmitoylated Spitz has an increased range of action but reduced activity. These data suggest a role for palmitoylation in restricting Spitz diffusion, allowing its local concentration to reach the threshold required for biological function.  相似文献   

14.
Dorsal root ganglion (DRG) neurons co-cultured with skin-derived fibroblast-like cells (FLCs) show a strong neurite outgrowth. However, when physical contact between FLCs and neurons is prevented with membrane inserts, the DRG neurons exhibit a low survival and a deficient neurite growth. This indicates that cell adhesion molecules influence neuronal survival and neurite growth in co-cultures. The aim of the present study is to find out if selected adhesion molecules are expressed by cultivated FLCs with and without nervous influences, and/or by normal and denervated whole skin. RT-PCR data show that cultured FLCs and denervated skin express L1, N-CAM, N-cadherin and ninjurin, but not neurofascin or TAG-1. However, cultured FLCs exposed to DRG homogenates and innervated skin express N-cadherin only. Following application of neutralizing L1-, N-cadherin- and ninjurin-antibodies (but not N-CAM-antibodies) in the culture medium the mean number of surviving neurons is decreased. Co-cultures incubated with L1-, N-cadherin- or ninjurin-antibodies all show significantly less neurite outgrowth compared to controls. In conclusion, the findings in this paper indicate (i) that FLCs cultured in vitro and denervated whole skin express the cell adhesion factors L1, N-CAM, N-cadherin and ninjurin, (ii) that FLCs treated with neural molecules and innervated whole skin express N-cadherin only, (iii) that L1, N-cadherin and ninjurin are important for DRG neurons co-cultured with FLCs in vitro in terms of survival and neurite extension and (iv) that there may exist subpopulations of DRG-neurons with different sensitivities for N-cadherin- and ninjurin-antibodies.  相似文献   

15.
16.
《Fly》2013,7(4):198-214
Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome’s normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.  相似文献   

17.
Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization,RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627 and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2)and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.  相似文献   

18.
The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular β-sheet formed by the joining of two individual GFC β-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular β-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.  相似文献   

19.
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. This irreversible activation mechanism leads to rapid receptor desensitization by internalisation and degradation. We have explored the role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Experiments using the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling using two approaches, which showed that PAR2 stably expressed by CHO-K1 cells is palmitoylated and that palmitoylation occurs on cysteine 361. Palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ∼9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. We also show that receptor palmitoylation occurs within the Golgi apparatus and is required for efficient agonist-induced rab11a-mediated trafficking of PAR2 to the cell surface. Palmitoylation is also required for receptor desensitization, as agonist-induced β-arrestin recruitment and receptor endocytosis and degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. These data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor.  相似文献   

20.
Of the axonal signals influencing myelination, adhesion molecules expressed at the axonal surface are strong candidates to mediate interactions between myelinating cells and axons. The recognition cell-adhesion molecule L1, a member of the immunoglobulin superfamily has been shown to play important roles in neuronal migration and survival, and in PNS myelination. We have investigated the role of axonally expressed L1 in CNS myelination. In co-cultures of myelinating oligodendrocytes and neurons derived from murine brain, we demonstrate that, before myelination, L1 immunoreactivity is confined to neurites. After myelination commences, L1 expression is downregulated on myelinated axons and adjacent, but not yet myelinated, internodes.Interfering with L1 before the onset of myelination, by adding either anti-L1 antibody or L1-Fc fusion proteins to the culture medium, inhibits myelination. In addition, in purified cultures of oligodendrocytes, L1-Fc fusion protein prevents lysophosphatidic acid-induced activation of the mitogen-activated kinase (MAP)-kinase pathway. Together, our data indicate that L1 is involved in the initiation of CNS myelination, and that this effect might involve the dephosphorylation of oligodendroglial phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号