首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

In this series of papers, we present a design of poly(methyl methacrylate) (PMMA) recycling system considering environmental impacts, chemical hazards, and resource availability. We applied life cycle assessment (LCA), environment, health, and safety (EHS) assessment as well as material flow analysis to the evaluation of the recycling system.

Purpose

Recycling systems for highly functional plastics such as PMMA have not been studied sufficiently. Along with the popularization of PMMA-containing products such as liquid crystal displays (LCDs), the use of PMMA is steadily increasing, which will result in more waste of PMMA in the next decades. In this study, pyrolysis process for recycling waste PMMA into methyl methacrylate (MMA) monomer was examined, considering not only general environmental impacts quantified by life cycle assessment but also local environment, health, and safety hazards, and raw material availability.

Methods

Process EHS hazards assessment was applied to quantify the local effects of the PMMA monomer recycling process. Process hazards are strongly connected with the hazardous properties of chemical substances and stream conditions within the process. Two alternative cooling methods exist, and their difference was analyzed by LCA and EHS assessment. Besides the process hazard, the availability of waste PMMA must be an important point for the feasibility of implementing the PMMA monomer recycling process. The available amount can be quantified by analyzing the material flow of PMMA-containing products. PMMA contained in LCDs as light guide panels was selected as a feasible source of waste PMMA, and the quantity of PMMA flows in the society was evaluated.

Results and discussion

In the case of PMMA, monomer recycling has less process hazard than the production of fresh MMA from crude oil. The implementation of circulated cooling water could significantly decrease the process hazard in PMMA pyrolysis attributable to chemical hazards. Material flow analysis revealed that the availability of waste PMMA shows a fluctuating trend in the next 20 years because of the sharp peak demand for LCD television sets. The fluctuation is strongly dependent on the lifetime of LCD television sets.

Conclusions

PMMA monomer recycling has a potential to reduce environmental impacts with a less process hazards than fresh MMA production from crude oil. The availability of waste PMMA has a strong relationship with the lifetime of LCD television sets. The multiple and comprehensive assessments can reveal various aspects of a process technology.  相似文献   

2.

Purpose

The high consumption of electrical and electronic equipment motivated by the rapid technological advances seen over the years has lead to an increase in the generation of waste electrical and electronic equipment (WEEE). Such residues contain various dangerous substances and therefore deserve special attention. To that end, the Brazilian Policy on Solid Waste has provided guidelines on integrated and solid waste management, such as consumer electronics, aiming at their appropriate disposal and treatment through reverse logistics. In this context, the present work focuses on studying the recycling of some WEEE plastics.

Methods

This study was conducted using the methodological framework presented in the International Standard ISO 14040:2006 and aimed to determine the life cycle inventory (LCI) of a WEEE plastic recycling process in a company in Brazil. Having collected the data, it was possible to identify and quantify the environmental aspects caused by the recycling process of major plastics (acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS). The study was conducted in the only company in Brazil that operates WEEE plastic recycling in large scale.

Results and discussion

Some of the environmental aspects caused during the recycling process of the plastics under study were identified and quantified. As a result, besides presenting the inventory, it was also possible to determine a reduction in the consumption of energy and in CO2 emissions. When compared to the production of virgin ABS and HIPS, the recycling processes for such plastics showed a reduction in energy consumption by approximately 90% for both plastics and a reduction in CO2 emissions by approximately 84% for HIPS and 87% for ABS. The plastics recycled by the company retain over 90% of their virgin mechanical properties.

Conclusions

The study shows that recycling is highly relevant and that components present in WEEE received appropriate destination and treatment. Recycling avoids environmental impacts as it prevents WEEE from being disposed of in landfills and as the pellets of recycled plastics can re-enter the supply chain as raw materials. Considering the legislation in Brazil, the stage of collection/transport/treatment of WEEE conducted by the company under study presents strong indications of contributions to the environment, society, and economy of the country.
  相似文献   

3.

Purpose

Anthropogenic perturbation of the nitrogen cycle is attracting increasing attention as both an environmental and societal concern. Here, we provide the rationale and propose methods for independent treatment of anthropogenic mobilization, flows (in product systems) and emissions of fixed nitrogen in process-based environmental life cycle assessment.

Methods

We propose a simple methodology for aggregating N flows in life cycle assessment (LCA), with supporting characterization factors for all nitrogen-containing compounds on the Organization for Economic Cooperation and Development High Production Volume Chemical List for which specific chemical formulae are available, as well as all nitrogen-containing flows in the International Reference Life Cycle Data System. We subsequently apply our method and characterization factors to a life cycle inventory data set representing a subset of the consumption attributable to an average EU-27 consumer and compare the results against previously published estimates for nitrogen emissions at the consumer level that were generated using alternative methods/approaches.

Results and discussion

We derive a suite of over 2,000 characterization factors for nitrogen-containing compounds. Overall, the results generated by applying our method and characterization factors to the European Commission Basket-of-Products life cycle inventory data set are consistent with those observed from studies having a similar scope but different methodological approach.

Conclusions

This outcome suggests that anthropogenic mobilization, flows (in product systems) and emissions of fixed nitrogen can, indeed, be systematically inventoried and aggregated in process-based LCA for the purpose of better understanding and managing anthropogenic impacts on the global nitrogen cycle using the methods and characterization factors we propose.  相似文献   

4.

Purpose

Informal recycling is one of the most significant activities within waste management systems in low-income countries. The main aspect of a number of recently implemented waste management systems has been to organise the informal recycling sector. The implementation of formalisation is expected to eliminate social problems related to the informal sector, but this has not been precisely measured and evaluated. A lack of methodology to assess social impacts persists, as does the comparison of different formalisation approaches. The goal of this work is to develop a methodological procedure for assessing the contribution of formalised recycling systems in low-income countries in terms of social impacts, in comparison with informal systems.

Methods

Some existing social assessment approaches were evaluated by a review of literature. This investigation focuses on the development of the social life cycle assessment approach, the analysed social aspects, proposed indicators and characterisation models within this framework.

Results and discussion

This study proposes an approach for the social assessment of recycling systems based on formalisation approaches in low-income countries oriented towards the social life cycle assessment methodology (sLCA). The approach developed considers 3 social impact categories, 9 social subcategories and 26 semi-quantitative indicators for the assessment of the social impacts on formalised recyclers. It includes a characterisation procedure that takes into consideration the application of a score system and the calculation of average scores at both the indicator and subcategory levels.

Conclusions

This research shows that it would be feasible to apply a sLCA-based methodology to evaluate recycling systems based on formalisation of the informal sector. The impact categories and subcategories identified represent the social problems of informal recyclers. The 26 semi-quantitative indicators and the proposed characterisation approach attempt to measure the social impacts that currently are only qualitatively assumed. The applicability and validation of the indicators and characterisation procedure will be determined by further research. The methodology developed will be tested using data from three recycling systems in Peruvian cities.  相似文献   

5.

Purpose

The oft-cited waste hierarchy is considered an important rule of thumb to identify preferential waste management options and places waste prevention at the top. Nevertheless, it has been claimed that waste prevention can sometimes be less favorable than recycling because (1) recycling decreases only the primary production of materials, whereas waste prevention may reduce a combination of both primary and low-impact secondary production, and (2) waste prevention decreases the quantity of material recycled downstream and the avoided impacts associated with recycling. In response to this claim, this study evaluates the life cycle effects of waste prevention activities (WPAs) on a residential waste management system.

Methods

This life cycle assessment (LCA) contrasts the net impacts of a large residential solid waste management system (including sanitary landfilling, anaerobic digestion, composting, and recycling) with a system that incorporates five WPAs, implemented at plausible levels (preventing a total of 3.6 % of waste generation tonnage) without diminishing product service consumption. WPAs addressed in this LCA reduce the collected tonnage of addressed advertising mail, disposable plastic shopping bags, newspapers, wine and spirit packaging, and yard waste (grass).

Results and discussion

In all cases, the WPAs reduce the net midpoint and endpoint level impacts of the residential waste management system. If WPAs are incorporated, the lower impacts from waste collection, transportation, sorting, and disposal as well as from the avoided upstream production of goods, more than compensate for the diminished net benefits associated with recycling and the displaced electricity from landfill gas utilization.

Conclusions

The results substantiate the uppermost placement of waste prevention within the waste hierarchy. Moreover, further environmental benefits from waste prevention can be realized by targeting WPAs at goods that will be landfilled and at those with low recycled content.  相似文献   

6.

Purpose

This life cycle assessment (LCA) study compares two prevalent end-of-life (EOL) treatment methods for scrap tires: material recycling and energy recovery. The primary intended use of the study results is to inform stakeholders of the relative environmental burdens and trade-offs associated with these two EOL vehicle tire treatment methods. The study supports prioritization of the waste treatment hierarchy for this material stream in the US.

Methods

This LCA compares (1) material recycling through ambient-temperature mechanical processing and (2) energy recovery through co-incineration of both whole and preprocessed scrap tires at a cement kiln. The avoided burden recycling methodology reflects the substitution of virgin synthetic rubber used in asphalt modification with the ground tire rubber from material recycling and the substitution of conventional kiln fuels with the tire-derived fuel (TDF). Both attributional (ALCA) and consequential (CLCA) methodologies are used: the ALCA assesses the environmental profiles of the treatment methods and the CLCA examines the potential effects of shifting more scrap tires to material recycling. The attributional portion of the LCA study was conducted in accordance with ISO standards 14044 series.

Results

The results in both methodological approaches indicate that the material recycling scenario provides greater impact reductions than the energy recovery scenario in terms of the examined environmental impact potentials: energy demand, iron ore consumption, global warming potential, acidification, eutrophication, smog formation, and respiratory effects. The additional impact reductions from material recycling are significant, and the establishment of new infrastructure required for a shift to material recycling incurs relatively insignificant burdens. Sensitivity analyses indicate that this conclusion does not change for (1) a range of TDF heating values, (2) a decrease in the mixed scrap tire rubber-to-steel composition ratio, (3) two alternative electricity grid fuel mixes with higher and lower carbon dioxide emission rankings than that of the baseline scenario, or (4) a comparison of material recycling to energy recovery when TDF is used in pulp and paper mills instead of cement kilns.

Conclusions

These results provide a basis for more informed decision-making when prioritizing scrap tire waste treatment hierarchy.  相似文献   

7.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

8.

Purpose

The objective of this case study is to identify the relevant processes needed in the environmental assessment of the end of life of a building and to identify the demolition process variables that significantly affect energy consumption and emissions of greenhouse gases. Different scenarios of demolition, based on three alternatives for managing construction and demolition waste (C&DW) generated during demolition works, are analyzed. This study is based upon typical construction and demolition practices and waste management in Spain.

Methods

Life cycle assessment (LCA) methodology is applied to assess objectively and quantitatively different C&DW management plans during the design phase and to identify the significant environmental aspects. The impact categories considered are global warming potential and human toxicity potential. Furthermore, the indicator primary energy (non renewable energy from fossil fuels) is also studied.

Results

Design of C&DW management plans to enhance the recovery of waste, reducing significantly the selected environmental indicators, was assessed in this study. Waste transport from the demolition work to the treatment plant and the transport of the non-recyclable fraction to the final disposal, as well as the fuel consumption in hydraulic demolition equipment and in the loading/unloading equipment of the treatment plants, are the most significant environmental aspects associated with the management plan based on a selective demolition, whereas in a conventional demolition process, the main environmental aspect is waste transport from the demolition work to final disposal.

Conclusions

LCA studies allow an assessment of different demolition processes. A tool for recording environmental data has been developed. This tool provides in a systematic manner life cycle inventory and life cycle impact assessment of the end of life of a building, facilitating the study of management plans in the design phase.  相似文献   

9.

Purpose

Carbon fibers have been widely used in composite materials, such as carbon fiber-reinforced polymer (CFRP). Therefore, a considerable amount of CFRP waste has been generated. Different recycling technologies have been proposed to treat the CFRP waste and recover carbon fibers for reuse in other applications. This study aims to perform a life cycle assessment (LCA) to evaluate the environmental impacts of recycling carbon fibers from CFRP waste by steam thermolysis, which is a recycling process developed in France.

Methods

The LCA is performed by comparing a scenario where the CFRP waste is recycled by steam-thermolysis with other where the CFRP waste is directly disposed in landfill and incineration. The functional unit set for this study is 2 kg of composite. The inventory analysis is established for the different phases of the two scenarios considered in the study, such as the manufacturing phase, the recycling phase, and the end-of-life phase. The input and output flows associated with each elementary process are standardized to the functional unit. The life cycle impact assessment (LCIA) is performed using the SimaPro software and the Ecoinvent 3 database by the implementation of the CML-IA baseline LCIA method and the ILCD 2011 midpoint LCIA method.

Results and discussion

Despite that the addition of recycling phase produces non-negligible environmental impacts, the impact assessment shows that, overall, the scenario with recycling is less impactful on the environment than the scenario without recycling. The recycling of CFRP waste reduces between 25 and 30% of the impacts and requires about 25% less energy. The two LCIA methods used, CML-IA baseline and ILCD 2011 midpoint, lead to similar results, allowing the verification of the robustness and reliability of the LCIA results.

Conclusions

The recycling of composite materials with recovery of carbon fibers brings evident advantages from an environmental point of view. Although this study presents some limitations, the LCA conducted allows the evaluation of potential environmental impacts of steam thermolysis recycling process in comparison with a scenario where the composites are directly sent to final disposal. The proposed approach can be scaled up to be used in other life cycle assessments, such as in industrial scales, and furthermore to compare the steam thermolysis to other recycling processes.
  相似文献   

10.

Purpose

Currently, the bio-based plastics have been drawing considerable attention from the packaging industry as a sustainable solution for replacing petroleum-based plastics in order to reduce the accumulation of plastic waste in the environment. This work has benchmarked the environmental impact of bio-based against petroleum-based plastics for single use boxes. In this paper, the cradle to consumer gate environmental impact data of these boxes was calculated and reported as part 1. End-of-life options of both bio- and petroleum-based boxes are an important subject which will be further studied for part 2. The energy sources in this work were taken from the Thailand energy database namely: Thai electricity grid mix (TEGM), Thai coal electricity (TCE), Thai natural gas combine cycle (TNGCC), and Thai coal integrated gasification combine cycle (TIGCC).

Methods

The materials studied were polystyrene (PS) derived from petroleum, polylactic acid (PLA) derived from corn, and PLA/cassava starch blend (PLA/starch). The tray with lid (herein after called box) was processed in a plastic manufacturing in Thailand using cast sheet extrusion and then thermoforming techniques. The functional unit is specified as 10,000 units of 8.0?×?10.0?×?2.5 cm of PS, PLA, and PLA/starch boxes which weigh 447.60, 597.60, and 549.56 kg, respectively. Three impact categories; namely global warming potential including direct greenhouse gas, and indirect land use change (LUC) emissions, acidification, and photochemical ozone formation are investigated. Finally, the normalization results including and excluding LUC consideration were compared and reported.

Results and discussion

The results from this study have shown that the total environmental impact including LUC emission of bio-based boxes were different when the various energy sources were supplied throughout the life cycle production stage. It can be seen that the PS box has lower environmental impact than PLA and PLA/starch boxes when TEGM, TCE, TNGCC, and TIGCC were used as energy supplied. LUC of renewable feedstocks, such as corn and cassava, were considered as the biggest impact of absolute scores of PLA and PLA/starch boxes. These results are consistent with Piemonte and Gironi (2010).

Conclusions

PLA and PLA/starch boxes give a slightly higher environmental impact than the PS box by 1.59 and 1.09 times, respectively, when LUC was not accounted in the absolute scores and clean energy TIGCC was used throughout the life cycle.  相似文献   

11.

Purpose

The protocols of carbon footprints generally define three scopes for different greenhouse gas (GHG) emissions levels. The most important carbon footprint emissions source comes from upstream indirect emissions of scope 3 for products that do not consume energy during their use phase. Upstream scope 3 GHG inventory can usually be analyzed through input–output or hybrid LCA analysis. The economic input–output life cycle analysis (EIO-LCA) and the hybrid LCA model have been widely used for this purpose. However, a cutoff error exists in the hybrid model, and the lack of a truncation criterion between process and IO inventory may lead to a high level of uncertainty in the hybrid model. This study attempts to improve the problem of cutoff uncertainty in hybrid LCA and proposes a method to minimize the cutoff uncertainty.

Methods

The way to improve the cutoff uncertainty could follow two steps. First, through the IO inventory analysis of EIO-LCA, we can define the emissions by various tiers of product components. The IO inventory indicator can provide a definitive criterion for the process inventory of the hybrid model. Second, we connect the process- and IO-LCI according to the IO inventory result. The advantage of the process inventory is that it provides detailed manufacturing information on the target while the IO encompasses a complete system boundary. For improvements, the process inventory can catch the most important process of the GHG emissions, and the IO inventory could compensate for the remainder of the incomplete system inventory.

Results and discussion

In this case study, the printed circuit board production process is used to evaluate the efficiency of the improved method. The threshold M was set to 70 in this case study, and the IO inventory provides the remaining 30 %. For the integrated hybrid model, the tier 3 process inventory takes only 64 % while the incorporation of the proposed method can include 92 % of the total emissions, which shows the cutoff uncertainty can be reduced through the improvement.

Conclusions

This study provides a clear guideline for process and IO cutoff criteria, which can help the truncation uncertainty. When higher precision is required, process LCI will need to play an important role, and thus, a higher M value should be set. In this situation, the emissions from IO-LCI would be smaller than the emissions from the process LCI. The appropriate solution would attain a comfortable balance between data accuracy and time and labor consumption.  相似文献   

12.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

13.
‘Design for Recycling’ and dematerialization by enhancing the durability of products are major aspects of the quest for sustainable products. This article presents an LCA-based model for the integrated analyses of the product chain, its recycling systems, and its waste treatment systems at the ‘End of Life’ stage. The model is an extension of the EVR (Eco-costs/Value Ratio) model which has been published in this journal (Vogtländer et al. 2001), but can also be applied to other life cycle interpretation models, since the model as such is not restricted to the use of the eco-costs as a single indicator. The model has been developed to evaluate the design alternatives of complex products like buildings and cars. These products comprise several subsystems, each with its own special solution at the End of Life stage: Extending of the product life, object renovation, re-use of components, re-use of materials, useful application of waste materials, immobilization with and without useful applications, incineration with and without energy recovery, land fill. Since complex product systems always comprise a combination of these design alternatives, a methodology is given to calculate and allocate the eco-costs of the total system in order to select the best solution for sustainability. The methodology is characterized by:
  1. A main allocation model of the recycling flow based on physical relationships,
  2. a strict separation of the market value, the costs and the ecocosts in the system,
  3. a main allocation model for extension of lifetime based on ‘depreciation of eco-costs’, parallel to economic depreciation.
  相似文献   

14.

Purpose

Improper disposal of used polyethylene terephthalate (PET) bottles constitute an eyesore to the environmental landscape and is a threat to the flourishing tourism industry in Mauritius. It is therefore imperative to determine a suitable disposal method of used PET bottles which not only has the least environmental load but at the same time has minimum harmful impacts on peoples employed in waste disposal companies. In this respect, the present study investigated and compared the environmental and social impacts of four selected disposal alternatives of used PET bottles.

Methods

Environmental impacts of the four disposal alternatives, namely: 100 % landfilling, 75 % incineration with energy recovery and 25 % landfilling, 40 % flake production (partial recycling) and 60 % landfilling and 75 % flake production and 25 % landfilling, were determined using ISO standardized life cycle assessment (ISO 14040:2006) and with the support of SimaPro 7.1 software. Social life cycle assessments were performed based on the UNEP/SETAC Guidelines for Social Life Cycle Assessment of products. Three stakeholder categories (worker, society and local community) and eight sub-category indicators (child labour, fair salary, forced labour, health and safety, social benefit/social security, discrimination, contribution to economic development and community engagement) were identified to be relevant to the study. A new method for aggregating and analysing the social inventory data is proposed and used to draw conclusions.

Results and discussion

Environmental life cycle assessment results indicated that highest environmental impacts occurred when used PET bottles were disposed by 100 % landfilling while disposal by 75 % flake production and 25 % landfilling gave the least environmental load. Social life cycle assessment results indicated that least social impacts occurred with 75 % flake production and 25 % landfilling. Thus both E-LCA and S-LCA rated 75 % flake production and 25 % landfilling to be the best disposal option.

Conclusions

Two dimensions of sustainability (environmental and social) when investigated using the Life Cycle Management tool, favoured scenario 4 (75 %?% flake production and 25 % landfilling) which is a partial recycling disposal route. One hundred percent landfilling was found out to be the worst scenario. The next step will be to explore the third pillar of sustainability, economic, and devise a method to integrate the three dimensions with a view to determine the sustainable disposal option of used PET bottles in Mauritius.  相似文献   

15.

Purpose

The aim of this study is to assess the life cycle carbon footprint of the New Zealand kiwifruit packaging and transport supply chain to retailers in two major markets (Japan and Germany). Results of this study have been used to identify areas of the New Zealand kiwifruit packaging and transport supply chain that contribute significantly to the carbon footprint and to identify options for reduction.

Methods

This study is based on the ISO standards for life cycle assessment (namely, ISO 14040:2006 and ISO 14044:2006). The PAS 2050 also provided further methodological guidance. Primary packaging data were sourced from Zespri’s suppliers. End-of-life data were sourced from the market and waste statistics of the relevant countries. Gabi 4.4 was used for upstream material information and modelling.

Results and discussion

The carbon footprint of the packaging and transport of kiwifruit ranged from 0.33 to 0.67 kg CO2e per kilogram of fruit delivered to a store depending on pack type and market. Shipping accounted for the majority of these emissions (58–82 %), and Zespri is actively working with shipping companies to reduce this. There are also opportunities to reduce the carbon footprint through reducing the amount of fruit repacked in the market, using trains for long-distance transport and increasing packaging recycling rates.

Conclusions

There is a range of options for reducing the carbon footprint of the New Zealand kiwifruit packaging and transport supply chain. These will tend to be incremental (i.e. a number of small gains) and would involve working closely with partners in the supply chain. Options include increased efficiency in shipping, use of trains for land transport, reductions in the addition of structural packaging in the market, managing the product mix to minimize those supply chains with a higher carbon footprint, identifying alternative material for components of the packaging, replacing the use of polystyrene clamshells with alternative materials or plastic bags and maximizing recycling rates along all stages of the supply chain.  相似文献   

16.

Purpose

This paper compares 16 waste lubricant oil (WLO) systems (15 management alternatives and a system in use in Portugal) using a life cycle assessment (LCA). The alternatives tested use various mild processing techniques and recovery options: recycling during expanded clay production, recycling and electric energy production, re-refining, energy recovery during cement production, and energy recovery during expanded clay production.

Methods

The proposed 15 alternatives and the actual present day situation were analyzed using LCA software UMBERTO 5.5, applied to eight environmental impact categories. The LCA included an expansion system to accommodate co-products.

Results

The results show that mild processing with low liquid gas fuel consumption and re-refining is the best option to manage WLO with regard to abiotic depletion, eutrophication, global warming, and human toxicity environmental impacts. A further environmental option is to treat the WLO using the same mild processing technique, but then send it to expanded clay recycling to be used as a fuel in expanded clay production, as this is the best option regarding freshwater sedimental ecotoxicity, freshwater aquatic ecotoxicity, and acidification.

Conclusions

It is recommended that there is a shift away from recycling and electric energy production. Although sensitivity analysis shows re-refining and energy recovery in expanded clay production are sensitive to unit location and substituted products emission factors, the LCA analysis as a whole shows that both options are good recovery options; re-refining is the preferable option because it is closer to the New Waste Framework Directive waste hierarchy principle.  相似文献   

17.

Purpose

This study provides a general methodology to integrate LCA into a single- or multi-objective process design optimization context. It uses specific weightings for foreground emissions, for preventable background emissions and for unpreventable background emissions, for each impact category. It is illustrated for a natural gas combined cycle power plant with three scenarios to reduce its carbon dioxide emissions: CO2 capture and sequestration, fuel substitution with biogas or fuel substitution with synthetic gas from wood.

Methods

Assuming that the opportunity to prevent emissions elsewhere is an implicit part of the process design decision space, the optimal solution cannot waste such opportunities and is shown to minimize total life cycle costs, including emission avoidance costs based on the optimal combination of prevention and compensation measures in the background system. In the case study, background emissions are inventoried from the ecoinvent database, their compensation costs are derived from the Ecocosts 2007 impact assessment method and their prevention costs are estimated from the literature. The calculated avoidance costs (weightings) then show how the background system affects the final choice of CO2 reduction scenario.

Results and discussion

In the case study, all three options partially shift environmental burdens to the background system, which can be prevented or compensated. The corresponding minimum avoidance cost is highest overall for the biogas option, thus putting it at a disadvantage. For a vast majority of ecoinvent processes, energy efficiency is important to minimize total avoidance costs because they are dominated by background CO2. Furthermore, prevention cost data gathering can be simplified in some cases, without distorting design decisions, using a CO2-only background inventory. The non-CO2 background inventory is more useful after process design, for procurement decisions.

Conclusions

Over-investing in design modifications cannot achieve the same background impact reductions as a sensible green procurement policy. Thus, the proposed weighting methodology ensures that all types of design decisions integrate LCA without incorrectly assuming that emissions are necessarily unavoidable when in the background. Within a context of future emission taxes or tradable permits, the weightings can also anticipate the after-tax cost passed on by suppliers—a marketable benefit of LCA.

Recommendations

Since many LCA studies are equivalent to design optimization problems, the proposed weighting methodology provides a single-score impact method relevant to decision-making as well as a straightforward approach to LCA interpretation in terms of detailing the optimal combination of applicable design modifications, prevention measures and compensation measures.  相似文献   

18.

Purpose

The metal and mining industry routinely conducts life cycle assessment studies to monitor and document the potential environmental impacts of their products. These studies are typically conducted independently by the various commodity associations. To facilitate alignment of these methodologies, a working group comprised of interested industry organizations and their representatives was formed to propose uniform recommendations for key methodological choices.

Methods

Existing methodologies used by the participating associations were reviewed to identify areas of alignment as well as areas which could benefit from discussions and alignment. Recommendations for selected topics were then developed through a series of moderated discussions among the participating organizations throughout 2012 and 2013. Efforts were taken in the creation of the document to ensure alignment with the international standards ISO 14040 (2006) and ISO 14044 (2006). Four methodology issues were chosen to be addressed with respect to industry alignment: system boundary, recycling allocation, co-product allocation, and impact assessment categories.

Results and discussion

Recommendations for system boundary conclude that boundaries should include end-of-life disposal and recycling and, whenever possible, the product use phase, particularly for material and product comparison. For co-product allocation methods, the recommendations were based on the type of co-products being produced and included a range of options to guide practitioners’ decisions. It was recommended for recycling allocation that practitioners use the avoided burden methodology. Lastly, for the life cycle impact assessment stage, it was recommended that life cycle assessments (LCAs) on metal and mining products should report the following impact categories: global warming potential, acidification potential, eutrophication potential, photochemical oxidant creation potential, and ozone depletion potential. It was recommended that inclusion of other impact categories will be periodically re-evaluated by the metal industry. Further, the recommendation is that, while impact categories included are limited to the five above, all life cycle inventory (LCI) datasets themselves should contain accurate and comprehensive inventory data, given reasonable accessibility and data collection cost constraints.

Conclusions

Methodological alignment for LCA studies in the metal and mining industry will lead to improved consistency and applicability of the LCA data and results. Specifically, these recommendations improve the consistency of decisions regarding system boundary, recycling allocation, co-product allocation, and impact assessment categories. Further research is suggested to improve the specificity of certain recommendations (e.g., allocation), as well as expand the scope of the harmonization efforts to include other methodological decisions.
  相似文献   

19.

Purpose

In a world where the population is expected to peak at around 9 billion people in the next 30 to 40 years, carefully managing our finite natural resources is becoming critical. We must abandon the outdated ‘take, make, consume and dispose’ mentality and move toward a circular economy model for optimal resource efficiency. Products must be designed for reuse and remanufacturing, which would reduce significant costs in terms of energy and natural resources.

Methods

To measure progress in achieving a circular economy, we need a life cycle approach that measures the social, economic and environmental impact of a product throughout its full life cycle—from raw material extraction to end-of-life (EoL) recycling or disposal. Life cycle thinking must become a key requirement for all manufacturing decisions, ensuring that the most appropriate material is chosen for the specific application, considering all aspects of a products’ life. The steel industry has been developing LCI data for 20 years. This is used to assess a product’s environmental performance from steel production to steel recycling at end-of-life. The steel industry has developed a methodology to show the benefits of using recycled steel to make new products. Using recycled materials also carries an embodied burden that should be considered when undertaking a full LCA.

Results and discussion

The recycling methodology is in accordance with ISO 14040/44:2006 and considers the environmental burden of using steel scrap and the benefit of scrap recycling from end-of-life products. It considers the recycling of scrap into new steel as closed material loop recycling, and thus, recycling steel scrap avoids the production of primary steel. The methodology developed shows that for every 1 kg of steel scrap that is recycled at the end of the products life, a saving of 1.5 kg CO2-e emissions, 13.4 MJ primary energy and 1.4 kg iron ore can be achieved. This equates to 73, 64 and 90 %, respectively, when compared to 100 % primary production.

Conclusions

Incorporating this recycling methodology into a full LCA demonstrates how the steel industry is an integral part of the circular economy model which promotes zero waste; a reduction in the amount of materials used and encourages the reuse and recycling of materials.
  相似文献   

20.

Purpose

Bananas are one of the highest selling fruits worldwide, and for several countries, bananas are an important export commodity. However, very little is known about banana’s contribution to global warming. The aims of this work were to study the greenhouse gas emissions of bananas from cradle to retail and cradle to grave and to assess the potential of reducing greenhouse gas (GHG) emissions along the value chain.

Methods

Carbon footprint methodology based on ISO-DIS 14067 was used to assess GHG emissions from 1 kg of bananas produced at two plantations in Costa Rica including transport by cargo ship to Norway. Several methodological issues are not clearly addressed in ISO 14067 or the LCA standards 14040 and ISO 14044 underpinning 14067. Examples are allocation, allocation in recycling, representativity and system borders. Methodological choices in this study have been made based on other standards, such as the GHG Protocol Products Standard.

Results and discussion

The results indicate that bananas had a carbon footprint (CF) on the same level as other tropical fruits and that the contribution from the primary production stage was low. However, the methodology used in this study and the other comparative studies was not necessarily identical; hence, no definitive conclusions can be drawn. Overseas transport and primary production were the main contributors to the total GHG emissions. Including the consumer stage resulted in a 34 % rise in CF, mainly due to high wastage. The main potential reductions of GHG emissions were identified at the primary production, within the overseas transport stage and at the consumer.

Conclusions

The carbon footprint of bananas from cradle to retail was 1.37 kg CO2 per kilogram banana. GHG emissions from transport and primary production could be significantly reduced, which could theoretically give a reduction of as much as 44 % of the total cradle-to-retail CF. The methodology was important for the end result. The choice of system boundaries gives very different results depending on which life cycle stages and which unit processes are included. Allocation issues were also important, both in recycling and in other processes such as transport and storage. The main uncertainties of the CF result are connected to N2O emissions from agriculture, methane emissions from landfills, use of secondary data and variability in the primary production data. Thus, there is a need for an internationally agreed calculation method for bananas and other food products if CFs are to be used for comparative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号