首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

I-beams for outdoor structures are traditionally made from conventional materials such as stainless steel due to its high strength and corrosive resistant properties. Alternatively, the I-beam can also be made from composite materials such as glass-reinforced plastics (GRP), which provide similar properties under a lighter weight and a lower cost condition. Nonetheless, their environmental footprint performance depends largely on activities involved during their life cycle. Therefore, the findings are presented in two parts: Part 1 and 2. This paper is about Part 1, which presents the environmental footprint for the cradle-to-grave of one linear metre I-beam that is made from two materials namely stainless steel (316) and GRP. Part 2, which will be submitted as a separate paper, has specifically analysed their environmental and economic impacts for the different cradle-to-gate scenarios and the potential carbon tax.

Materials and methods

Materials that were used to compare the environmental footprint of an I-beam are GRP and stainless steel (316). Their cradle-to-grave activities included raw material extraction, supplier transportation, manufacturing process, distribution, disposal transportation and process. Input data were based on data provided by a composites company in Australia, the Ecoinvent 2.2 and Australian data 2007 databases. The World ReCiPe midpoint and endpoint methods were used to assess the environmental footprint.

Results and discussion

The environmental footprint results for the cradle-to-grave of the I-beams are presented as a contribution percentage of the single score unit in the total and damage category levels which produced by the endpoint method. The characteristic and normalisation results were also generated for all impact categories by the midpoint method.

Conclusions

Overall, the cradle-to-grave results show that the composite I-beam produces 20 % less environmental footprint than that of the stainless steel I-beam. The human health damage category is affected the most due to the main contribution from the material stage. The cradle-to-gate results are contributed by 90 % from raw material extraction, 7 % from the manufacturing process and 3 % from the supplier transportation. In terms of the characteristic results, the composite I-beam produces less environmental impact in most of the impact categories except for the climate change, photochemical oxidant formation, terrestrial acidification, marine eutrophication, natural land transformation and fossil depletion. Therefore, the influential parameters of these impact categories are investigated further in Part 2 where the environmental footprint and economic impact are estimated for different cradle-to-gate scenarios of the I-beams.  相似文献   

2.

Purpose

Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win–win or trade-off situations will be identified via a life cycle assessment/life cycle costing (LCA/LCC) integrated model.

Methods

The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the life cycle inventory and the life cycle impact assessment.

Results and discussion

In both the SST and CST systems, the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win–win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its end-of-life stage.

Conclusions

The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Furthermore, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company or, in some cases, even in its procurement practices.  相似文献   

3.

Purpose

The construction sector was the second largest contributor of Hong Kong carbon emissions, and 85 % of the emission from construction was external in nature. The carbon footprint embodied in each building construction material varies considerably under different conditions. This study aims to quantify the embodied carbon footprint of building construction materials used in Hong Kong with the consideration of local factors and to investigate how the region-specific characteristic would affect the result.

Methods

A “cradle-to-site” system boundary was used, including raw material extraction, manufacturing, and transport until the material reaches the construction site. Data were collected from manufacturers in local and nearby regions. Portland cement and ready mix concrete were selected as examples in this study to demonstrate the calculation.

Results and discussion

It is indicated that for cement, decomposition of limestone contributes the largest to the total greenhouse gas emission over the life cycle, followed by fuel combustion. The surveyed cement plant performs at an average level in manufacture, but the import of raw materials increases the total emissions. For concrete, the major contributor is cement manufacturing. Comparison with other databases reveals that there is room for improvement in carbon reduction of the surveyed plants. The “cradle-to-site” results on cement and concrete show no significant difference from the “cradle-to-gate” results.

Conclusions

Hong Kong’s dependency on imports increases the carbon footprint of locally used building construction materials. The presented methodology can be modified and extended to other materials, thereby helping lower the carbon footprint of construction activities by providing a benchmark for selecting green materials.  相似文献   

4.

Purpose

The purpose of this paper is to provide an improved (up-to-date) insight into the environmental burden of textiles made of the base materials cotton, polyester (PET), nylon, acryl, and elastane. The research question is: Which base material and which life cycle stage (cradle-to-gate as well as cradle-to-grave) have the biggest impact on the environment?

Methods

Life cycle inventory (LCI) data are collected from the literature, life cycle assessment (LCA) databases, and emission registration database of the Dutch government, as well as communications with both manufacturing companies of production equipment and textile companies. The output of the calculations is presented in four single indicators: Eco-costs 2012 (a prevention-based indicator), CO2 equivalent (carbon footprint), cumulative energy demand (CED), and ReCiPe (a damage-based indicator).

Results and discussion

From an analysis of the data, it becomes clear that the environmental burden is not only a function of the base materials (cotton, PET, nylon, acryl, and elastane) but also of the thickness of the yarn (for this research, the range of 50–500 dtex is examined). The authors propose that the environmental burden of spinning, weaving, and knitting is a function of 1/yarn size. The cradle-to-grave analysis from raw material extraction to discarded textile demonstrates that textiles made out of acryl and PET have the least impact on the environment, followed by elastane, nylon, and cotton. The use phase has less relative impact than it is suggested in the classical literature.

Conclusions

The impact of spinning and weaving is relatively high (for yarn thicknesses of less than 100 dtex), and from the environmental point of view, knitting is better than weaving. LCA on textiles can only be accurate when the yarn thickness is specified. In case the functional unit also indicates the fabric per square meter, the density must be known. LCA results of textile products over the whole value chain are case dependent, especially when dyeing and finishing processes and the use phase and end-of-life are included in the analysis. Further LCI data studies on textiles and garments are urgently needed to lower the uncertainties in contemporary LCA of textile materials and products.  相似文献   

5.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

6.

Purpose

This study aims to (1) evaluate the environmental impacts associated with the three types of raw cork produced in Portuguese cork oak woodlands (in Alentejo region) considering two alternative practices for stand establishment (plantation and natural regeneration), (2) compare the environmental impacts of raw cork production in Portuguese cork oak woodlands and in Catalonian cork oak forests, and (3) assess the influence of different allocation criteria for partitioning the environmental impacts between the different types of raw cork produced.

Methods

A cradle-to-gate approach was adopted starting with stand establishment up to cork storage in a field yard. The system boundaries include all management operations undertaken during the following stages: stand establishment, stand tending, cork stripping, and field recovery. The allocation of the environmental impacts to reproduction, second, and virgin cork was based on mass and market price criteria. An alternative allocation approach was simulated by allocating environmental impacts also to the wood produced in the cork oak stands. The impact assessment was performed using the characterization factors recommended by the International Reference Life Cycle Data System (ILCD).

Results and discussion

In Portugal, cork produced from naturally regenerated stands has a better environmental performance than cork produced from planted stands, but the differences are smaller than 10 %. Different management models of cork oak stands in Portugal and Catalonia (agro-silvopastoral system and forest system, respectively) originate different impact levels, which tend to be significantly lower in Catalonia. The environmental hot spots in the two regions are also distinct. In Catalonia, they are associated with cleaning, road maintenance, and worker and cork transport. In Portugal, they are fertilization, pruning, and cleaning. The two allocation criteria affect significantly the results obtained for virgin cork in Portugal and for virgin and second cork in Catalonia. Besides, when impacts are also allocated to wood, mass allocation should be avoided as it would not create incentives for a sustainable management of cork oak stands.

Conclusions

The environmental impact from Catalonian cork may be reduced by decreasing mechanized shrub cleaning and road maintenance operations through the introduction of livestock in cork oak forests, and also by a better planning of management operations. For the Portuguese cork, improvements may be achieved by optimizing fertilizer dosage, planting nitrogen-fixing crops and pastures that improve soil quality, avoiding unnecessary operations, improving the efficiency of management operations, and increasing tree density.  相似文献   

7.

Purpose  

The purpose of this research was to develop a nonrenewable energy and greenhouse gas emissions ecoprofile of thermoplastic protein derived from blood meal (Novatein thermoplastic protein; NTP). This was intended for comparison with other bioplastics as well as identification of hot spots in its cradle-to-gate production. In Part 1 of this study, the effect of allocation on the blood meal used as a raw material was discussed. The objective of Part 2 was to assess the ecoprofile of the thermoplastic conversion process and to compare the cradle-to-gate portion of the polymer's life cycle to other bioplastics.  相似文献   

8.

Purpose

There are methodological questions concerning life cycle assessment (LCA) and carbon footprint evaluation of road pavements, including allocation among co-products or at end-of-life (EOL) recycling. While the development and adoption of a standard methodology for road pavement LCA would assist in transparency and decision making, the impact of the chosen method on the results has not yet been fully explored.

Methods

This paper examines the methodological choices made in UK PAS 2050 and asphalt Pavement Embodied Carbon Tool (asPECT), and reviews the allocation methods available to conduct road pavement LCA. A case study of a UK inter-urban road construction (cradle-to-laid) is presented to indicate the impact of allocation amongst co-products (bitumen and blast furnace slag); a typical UK asphalt production (cradle-to-gate) is modelled to show the influence of allocation at EOL recycling.

Results and discussion

Allocation based on mass is found to consistently lead to the highest figures in all impact categories, believed to be typical for construction materials. Changing from industry chosen allocation methods (Eurobitume, asPECT) to 100 % mass or economic allocation leads to changes in results, which vary across impact categories. This study illustrates how the allocation methods for EOL recycling affect the inventory of a unit process (asphalt production).

Conclusions and recommendations

Sensitivity analysis helps to understand the impact of chosen allocation method and boundary setting on LCA results. This initial work suggests that economic allocation to co-products used as secondary pavement materials may be more appropriate than mass allocation. Allocation at EOL recycling by a substitution method may remain most appropriate, even where the balance of credits between producers and users may be hampered by an inability to confidently predict future recycling rates and methods. In developing sector-specific guidelines, further sensitivity checks are recommended, such as for alternative materials and traffic management during maintenance.  相似文献   

9.

Purpose

Pharmaceutical and biological materials require thermally controlled environments when being transported between manufacturers, clinics, and hospitals. It is the purpose of this report to compare the life cycle impacts of two distinct logistical approaches to packaging commonly used in cold chain logistics and to identify the method of least environmental burden. The approaches of interest are single-use packaging utilizing containers insulated with either polyurethane or polystyrene and reusable packaging utilizing containers with vacuum-insulated panels.

Methods

This study has taken a cradle-to-grave perspective, which covers material extraction, manufacture, assembly, usage, transportation, and end-of-life realities. The functional unit of comparison is a 2-year clinical trial consisting of 30,000 individual package shipments able to maintain roughly 12 L of payload at a controlled 2–8 °C temperature range for approximately 96 h. Published life-cycle inventory data were used for process and material emissions. A population-centered averaging method was used to estimate transportation distances to and from clinical sites during container use. Environmental impacts of the study include global warming potential, eutrophication potential, acidification potential, photochemical oxidation potential, human toxicity potential, and postconsumer waste.

Results and discussion

The average single-use approach emits 1,122 tonnes of CO2e compared with 241 tonnes with the reusable approach over the functional unit. This is roughly a 75 % difference in global warming potential between the two approaches. Similar differences exist in other impact categories with the reusable approach showing 60 % less acidification potential, 65 % less eutrophication potential, 85 % less photochemical ozone potential, 85 % less human toxicity potential, and 95 % less postconsumer waste. The cradle-to-gate emissions of the single-use container were the overwhelming cause of its high environmental burden as 30,000 units were required to satisfy the functional unit rather than 772 for the reusable approach. The reusable container was about half the mass of the average single-use container, which lowered its transportation emissions below the single-use approach despite an extra leg of travel.

Conclusions

The reusable logistical approach has shown to impose a significantly smaller environmental burden in all impact categories of interest. A sensitivity analysis has shown some leeway in the degree of the environmental advantage of the reusable approach, but it confirms the conclusion as no case proved otherwise.  相似文献   

10.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

11.

Purpose

In recent years, the rising costs and infection control lead to an increasing use of disposable surgical instruments in daily hospital practices. Environmental impacts have risen as a result across the life cycle of plastic or stainless steel disposables. Compared with the conventional reusable products, different qualities and quantities of disposable scissors have to be taken into account. An eco-efficiency analysis can shed some light for the potential contribution of those products towards a sustainable development.

Methods

Disposable scissors made of either stainless steel or fibre-reinforced plastic were compared with reusable stainless steel scissors for 4,500 use cycles of surgical scissors used in Germany. A screening life cycle assessment (LCA) and a life cycle costing were performed by following ISO 14040 procedure and total cost of ownership (TCO) from a customer perspective, respectively. Subsequently, their results were used to conduct an eco-efficiency analysis.

Results and discussion

The screening LCA showed a clear ranking regarding the environmental impacts of the three types of scissors. The impacts of the disposable steel product exceeds those of the two others by 80 % (disposable plastic scissors) and 99 % (reusable steel scissors), respectively. Differences in TCO were smaller, however, revealing significant economic advantages of the reusable stainless steel product under the constraints and assumptions of this case study. Accordingly, the reusable stainless steel product was revealed as the most eco-efficient choice. It was followed by the plastic scissors which turned out to be significantly more environmentally sound than the disposable stainless steel scissors but also more cost-intensive.

Conclusions

The overall results of the study prove to be robust against variations of critical parameters for the prescribed case study. The sensitivity analyses were also conducted for LCA and TCO results. LCA results are shown to be reliable throughout all assumptions and data uncertainties. TCO results are more dependent on the choice of case study parameters whereby the price of the disposable products can severely influence the comparison of the stainless steel and the plastic scissors. The costs related to the sterilisation of the reusable product are strongly case-specific and can reduce the economic benefit of the reusable scissors to zero. Differences in environmental and economic break-even analyses underline the comparatively high share of externalised environmental costs in the case of the disposable steel product.  相似文献   

12.

Purpose

Built in 1941, the Progreso Pier was the first concrete structure in the world built with nickel-containing stainless steel reinforcement. The Pier has been in service for over 70 years without any significant repair or maintenance activities. The aim of this study was to understand the environmental and economic implications of selecting nickel-containing stainless steel reinforcement using the Progreso Pier as the case study.

Methods

A combined environmental life cycle assessment (LCA) and life cycle costing (LCC) study was conducted. The analysis considered the potential environmental impacts and the net present cost of the stainless steel reinforced structure from cradle to grave and compared it to the same structure using conventional carbon steel.

Results and discussion

The results indicated that while using stainless steel reinforcement resulted in a marginally higher environmental impact after initial construction, this is offset by the increased service life and, hence, less frequent maintenance and reconstruction activities. Relative to the as-built stainless steel reinforcement design, the environmental impacts of the carbon steel reinforced design are between 69 and 79 % higher over the analysis period. Similar observations were made for the other investigated impact categories. The cost implications of using stainless steel reinforcement show economic benefits that are complementary to the environmental benefits. Similar to the LCA, the service life benefits outweigh the higher unit costs for stainless steel, assuming a discount rate of 0.01 % as the baseline scenario. The carbon steel reinforced design has a net present cost that is 44 % higher than the as-built stainless steel reinforcement design. The crossover point for the two designs occurs at year 50, which corresponds to the reconstruction activity. A sensitivity analysis shows that the results and conclusions are sensitive to the choice in discount rate: Rates 3 % and lower produce net present costs that are lower for the as-built design; rates 4 % and higher produce net present costs that are lower for the alternative design.

Conclusions

The study demonstrates how LCA and LCC are complementary tools that can be used in decision-making for sustainable construction. The Progreso Pier exemplifies the importance of considering the entire life cycle with service life and recycling as well as long-term life cycle impacts of infrastructure projects from an environmental and economic perspective.
  相似文献   

13.

Purpose

Particleboard is a composite panel comprising small pieces of wood bonded by adhesives. The particleboard industry is growing in Pakistan, but there is little information on the environmental impacts associated with this product. Therefore, the aim of this study was to develop a life cycle assessment of particleboard manufactured in Pakistan and to provide suggestions to improve its environmental profile. The study covers energy use and associated environmental impacts of raw materials and processes during particleboard manufacture in the year 2015–2016.

Methods

The study uses a cradle-to-gate (distribution center) life cycle assessment approach. The reference unit for this study was 1.0 m3 of finished, uncoated particleboard. Primary data from the particleboard mill surveys were combined with secondary database information and modeled using CML 2000 v.2.05 methodology and a cumulative exergy demand indicator present in the SimaPro v.8.3 software.

Results and discussion

The results reveal that urea formaldehyde resin, transportation of raw materials, and finished product distribution had the highest contribution to all the environmental impact categories evaluated. Heavy fuel oil and natural gas consumption was responsible for abiotic depletion, photochemical oxidation, ozone layer depletion, and marine aquatic ecotoxicity impacts. The rotary dryer and hot press were the most important sectors in terms of emissions from the manufacturing process. The total cumulative exergy demand required for manufacturing of 1.0 m3 particleboard was 15,632 MJ-eq, with most of the energy usage associated with non-renewable, fossil fuel sources. A sensitivity analysis was conducted for a reduction in the quantity of urea formaldehyde resin consumed and freight transport distances.

Conclusions

The results indicated that reducing the urea formaldehyde resin use and freight distances could greatly decrease environmental impacts. Most of the surveyed mills did not have emissions control systems, and most of the mills exceed the limits set by the National Environmental Quality Standards of Pakistan. Environmental impact improvements might be attained by reducing quantity of urea formaldehyde resin and transportation freight distances and by installing pollution control devices.
  相似文献   

14.

Purpose

Eco-innovation strategies are increasingly adopted to ensure the minimization of environmental impacts. Nonetheless, only a comprehensive integrated assessment along the life cycle stages of a product may ensure a robust analysis of the benefit of the innovation. The object of the present study is the environmental assessment of furniture prototypes produced using certified wood and integrating eco-design criteria in their conception. The aim of the study was twofold: firstly, to evaluate the environmental profile of the furniture, highlighting possible hot spots of impacts, and secondly, to evaluate the capability of life cycle assessment (LCA) to identify the environmental benefit associated to the adoption of eco-innovation strategies, such as the following: ensuring short supply chain from raw material to production; using wood coming from certified forests (according to PEFC scheme); and the implementation of eco-design principles, also associated with green public procurement requirements.

Methods

LCA has been applied in a case study related to the wood furniture sector in the alpine region of Northern Italy. Every activity was modeled using primary data, related to the inputs and outputs of the processes, provided directly by the designers and by woodworking firms. Input data related to forestry activities and wood extraction were collected and processed in a previous phase of the study. The life cycle of a prototype school desk from the cradle-to-gate perspective was analyzed. A woodworking plant was examined in detail, dividing the whole manufacturing process into four phases: panels production, woodworking, painting and steel parts processing. The system boundaries included all the activities which take place inside the plant as well as energy inputs, transports and ancillary products used.

Results and discussion

The results highlighted that the working phases showing the greatest environmental burdens were the production of solid wood panels and the processing of iron parts. No concerns about chemicals, glues and paints were raised, due to the eco-design principles implemented in the production of the furniture. The choice of a short supply chain allowed for drastic reductions in the impacts associated to long-distance transports. Three sensitivity analyses were carried out to test the robustness of results concerning the following: (1) glue options, (2) drying phase and VOC emissions, and (3) transport options.

Conclusions

This study proves to which extent eco-design criteria implemented in practice improve the environmental performance of products. All positive effects due to decisions taken in school desk design and conception were supported by evidence.  相似文献   

15.

Background, aim, and scope

Using renewable feedstock and introducing biocatalysts in the chemical industry have been suggested as the key strategies to reduce the environmental impact of chemicals. The Swedish interdisciplinary research program “Speciality Chemicals from Renewable Resources—Greenchem” is aiming to develop these strategies. One target group of chemicals for Greenchem are wax esters which can be used in wood coatings to replace paraffin wax made from fossil crude oil. The aim of this study was to conduct a life cycle assessment of wax esters based on rapeseed oil produced by biocatalysts (enzymes). The scope was to compare the environmental performance of wax esters with paraffin wax produced by conventional methods.

Materials and methods

The study has a cradle-to-gate perspective and the functional unit is “1-kg wax product ready to use in a wood coating product.” Extensive data collection and calculations have been performed for the wax esters, whereas existing life cycle inventory data have been used for the paraffin wax.

Results

The energy input into the wax ester production is about one third of the energy input in paraffin wax production. However, the wax ester has a higher contribution to the global warming potential (GWP) due to high emissions of nitrous oxide from rapeseed cultivation. Referring to a cradle-to-grave perspective, including waste incineration, the contribution to the GWP will, however, be 3.5 times higher from paraffin wax. Wax ester makes a higher contribution to the acidification and eutrophication potential, due to emissions from soil from rapeseed cultivation, but five times lower contribution to the photochemical ozone creation potential. From a land-use perspective and a global warming point of view, it is more efficient to produce paraffin wax and grow high-yielding, short-rotation coppice (Salix) to replace fuel oil than it is to grow rapeseed for wax ester production.

Discussion

Overall, this study shows the importance of studying the environmental performance of a product not only from a gate-to-gate perspective but, instead, considering the environmental performance from cradle-to-gate. The biocatalytic production of the wax ester consumes less energy than the conventional chemical method, but the raw material step, cultivation of rapeseed contributes much to both acidification and eutrophication. When the waste treatment step is included, the contribution to GWP, however, for paraffin wax will be 3.5 times higher than for the wax ester.

Conclusions

From a gate-to-gate perspective, replacing conventional chemical processes by biocatalysts using enzymes leads to energy savings and reduces emissions. However, from a cradle-to-gate perspective, the use of renewable feedstock, such as rapeseed oil, may counteract some of these benefits. Concerning the GWP benefit from using renewable feedstock instead of fossil feedstock, the final waste treatment step must be included, thereby applying a cradle-to-grave perspective.

Recommendations and perspectives

The introduction of biocatalysts as a key strategy in reducing the environmental impact from the chemical industry is supported by the results in this study. On the other hand, it is not obvious that the key strategy of using renewable feedstock in chemical production per se leads to benefits concerning all environmental impact categories. Thus, much more attention needs to be paid to the choice of potential renewable feedstock options, the minimization of energy inputs, and the biological emissions from the soil in the cultivation of feedstock crops, improved gas cleaning in nitrogen fertilizer production plants, and the alternative use of the arable land, in optimizing the overall environmental benefits of an increased use of renewable feedstock in the chemical industry.  相似文献   

16.

Purpose

This study aims to analyze and quantify the environmental impacts associated with the production of testliner paper using 100?% recovered paper as fiber raw material, by applying the life cycle assessment principles. A simulation of advanced sorting technology was done to prepare and use batches of raw materials with different levels of contaminants. Comparative studies of environmental impact assessment were focused on the quality of recovered paper, which is decisively influenced by the efficiency of the sorting process. The particularity of the study is that so far it is the only one that analyzes the environmental impact generated by recovered paper quality.

Methods

To analyze the environmental impacts in the scenarios, life cycle assessment methodology was considered. Potential environmental impacts were assessed by using the CML 2009, Dec.07 method developed by the Centre for Environmental Science from the University of Leiden.

Results and discussion

In this study, acidification potential, abiotic resources depletion potential, eutrophication potential, global warming potential, photochemical ozone creation potential, and human toxicity potential were the impact categories analyzed. Considering that the system boundaries refer only to the paper mill that was obtained, all unitary processes involved in the manufacturing of product system influence in varying proportions the impact categories chosen for evaluation. A higher concentration of contaminants leads to a higher amount of energy and water used, and thus, a significant amount of waste and emissions generated. Simulations performed have highlighted the importance of sorting technology that influences the quality of raw material that will be used.

Conclusions

Utilization of recovered paper batches with a low quality contributes to an increased environmental impact associated with the testliner paper manufacturing stage. A low quality of recovered paper will influence energy consumption in different modules of the system (recycled fiber pulp preparation, paper machine, and wastewater treatment), the volume of waste generated, and consequently the emissions released both in air and water.  相似文献   

17.

Purpose

Sugarcane bagasse is one of the main agro-industrial residues which can be used to produce wood-based panels. However, more investigations related to its environmental performance assessment are needed, focusing on questions such as: Does it provide environmental benefits? What are its main environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.

Methods

The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main subsystems: bagasse generation, bagasse distribution, and PSB production. For the inventory of PSB, dataset from two previous LCA studies related to the conventional particle board production and the ethanol life cycle for the Brazilian context were used. The allocation criterion for the bagasse generation subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios were analyzed to evaluate the influence of the allocation criteria and the consumption of sugarcane bagasse.

Results and discussion

All hotspots identified by CML and USETox methods are mainly related to the PSB production subsystem (24–100 % of impacts) due to heavy fuel oil, electricity, and urea-formaldehyde resin supply chain. The bagasse generation subsystem was more relevant to the eutrophication category (75 % of impacts). The bagasse distribution subsystem was not relevant because the impacts on all categories were lower than 1 %. PSB can substitute the conventional particle board mainly because of its lower contribution to abiotic depletion and ecotoxicity. Regarding land use impacts, PSB showed lower values according to all indicators (38–40 % of all impacts), which is explained by the lower demand for land occupation in comparison to that of the traditional particle board.

Conclusions

PSB can replace the traditional particle board due to its better environmental performance. The analysis of the economic allocation criterion was relevant only for the EP category, being important to reduce diesel and N-based fertilizers use during sugarcane cultivation. Regarding the influence of the sugarcane bagasse consumption, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided.  相似文献   

18.

Purpose

Recently, using a long-run refinery simulation model, Bredeson et al. conclude that the light transportation fuels have roughly the same CO2 footprint. And, any allocation scheme which shows substantial difference between gasoline and diesel CO2 intensities must be seen with caution. The purpose of this paper is to highlight the inappropriate modeling assumptions which lead to these inapplicable conclusions into the current oil refining context.

Methods

From an economic point of view, optimization models are more suitable than simulation tools for providing decision policies. Therefore, we used a calibrated refinery linear programming model to evaluate the impact of varying the gasoline-to-diesel production ratio on the refinery's CO2 emissions and the marginal CO2 intensity of the automotive fuels.

Results and discussion

Contrary to Bredeson et al.'s conclusions, our results reveal that, within a calibrated optimization framework, total and per-product CO2 emissions could be affected by the gasoline-to-diesel production ratio. More precisely, in a gasoline-oriented market, the marginal CO2 footprint of gasoline is significantly higher than diesel, while the opposite result is observed within a diesel-oriented market. These two scenarios could reflect to some extent the American and the European oil refining industry for which policy makers should adopt a different per-product taxation policy.

Conclusions

Any relevant and economic ground CO2 policies for automotive fuels should be sensitive to the environmental consequences associated with their marginal productions. This is especially true in disequilibrium markets where the average and marginal reactions could significantly differ. Optimization models, whose optimal solution is fully driven by marginal signals, show that the refinery's global and/or per-product CO2 emissions could be affected by the gasoline-to-diesel production ratio.  相似文献   

19.

Purpose

In this study, a life cycle assessment of a bioplastic based diaper was performed. The product has several innovative elements, due to the implementation of eco-design principles, such as: (1) introduction of biopolymers (namely polylactic acid (PLA) and Mater-bi®), (2) relevant reduction of petrochemical plastics, and (3) minimization of energy consumptions and use of renewable energy in manufacturing. The aim of the study is to evaluate the environmental benefits gained through eco-innovation, while identifying further areas of improvement.

Methods

The bio-based diaper has been evaluated using a “cradle-to-gate” analysis. The functional unit is one diaper, assuming an average size among the different commercial options. A case study of an enterprise in Italy (WIP S.p.A) was carried out to collect as much reliable primary data as possible. In order to highlight potential areas of improvement and to compare the environmental performance of the product, a sensitivity analysis based on three different impact assessment methods (adopting ReCiPe 2008, IMPACT 2002+ and Cumulative Energy Demand (CED)) and a comparison with a standard commercial diaper were performed. Finally, three possible end-of-life scenarios including composting of WIP diaper were hypothesized and tested.

Results and discussion

Contribution analysis suggested that sourcing and production of raw materials used in WIP diaper manufacturing contributed most significantly to the potential environmental impacts. Adopting ReCiPe method, pulp, and sodium polyacrylate present the highest environmental burdens in WIP diaper system. Applying IMPACT2002+ method, PLA relative contribution to the toxicity increases, due to the generation of the electricity used in corn production and in PLA production phases. For both methods, impacts related to energy consumption of the WIP diapers’ production process look to be negligible. WIP diaper performance has room for improvement, since critical points were detected in the life cycle stages of raw materials used. However, the results of the normalization step, according to ReCiPe method, state that WIP diapers can bring environmental benefits, compared to standard ones. Moreover, if composting end-of-life scenario is included in the assessment, there is a significant improvement in WIP diaper environmental performance compared to a standard diaper.

Conclusions

Integrating eco-innovation and eco-design principles in the production of the bio-based diaper leads to a better environmental profile, compared to the standard one. Nevertheless, there are several areas of concerns to be considered in order to further improve its environmental performance. So far, the possible improvements identified from the case study are: (1) the selection of biopolymers suppliers with better production systems from an environmental point of view, (2) the reduction of distances along the supply chain, and (3) the implementation of composting procedures for the end of life. In conclusion, the introduction of biopolymers in diaper composition could lead them to be preferable compared to standard diapers, but criticisms arise, which need to be solved, to avoid the risk of burdens shifting.  相似文献   

20.
Ecodesign of PVC packing tape using life cycle assessment   总被引:1,自引:0,他引:1  

Purpose

Polymer materials play an important role in the improvement and quality of life. However, due to their persistence in the environment, polymer materials may be harmful to the ecosystems. According to the European Directive on Packaging and Packaging Waste, management of these wastes should include prevention of their generation as a priority. The main motivation for employing ecodesign of a product is to reduce both raw material consumption and waste generation through a good initial design.

Methods

In this study, life cycle assessment (LCA) was applied to the design of printed PVC plastic packing tape in order to reduce its environmental impact. LCA software GaBi4.4® was used to determine the PVC packing tape life cycle stage with the highest environmental impacts.

Results and discussion

LCA results showed that PVC film manufacture was the stage with the highest impact. It was therefore reasonable to assume that packing tape manufactured with material other than PVC could have reduced environmental impact, and LCA was used to evaluate this hypothesis. When using Kraft paper or polypropylene plastic packing tape, the weighted impacts were reduced by 36.3 and 39.9 %, respectively.

Conclusions

PVC plastic packing tape has been redesigned with the aim of reducing waste and raw material consumption. LCA results showed that a suitable option for reducing life cycle environmental impact is to use alternative film materials. Kraft paper and polypropylene plastic packing tape were found to give lower values of almost all environmental impact indexes and normalized and weighted impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号