首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs).

Methodology/Principal Findings

Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively activated by the odors indole (AaOR2) and (R)-(−)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2; IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while 2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs.

Conclusions/Significance

These data demonstrate that repellents can act as olfactory agonists or antagonists, thus modulating OR activity, bringing concordance to conflicting models.  相似文献   

2.
The lone star tick, Amblyomma americanum, is a vector of several important human and animal diseases. This tick species has rapidly expanded in its geographic distribution, and its aggressive behavior has increased the risk of tick-borne diseases in these new areas. Repellents are recommended by the Centers for Disease Control and Prevention (CDC) for protection against tick bites. DEET is the most common repellent, but public concerns over its safety have increased the need for alternative safe and efficacious tick repellents. Several naturally derived animal compounds have been tested against other species of ticks or other arthropod pests, but not against A. americanum. Based on EC50 values obtained using a vertical paper bioassay, decylamine and MT-710 (a 2-tridecanone formulation) were found to be as repellent as DEET. Those two substances along with 2-tridecanone were also found to be as repellent as DEET when their EC95 values were compared. Lone star ticks were more susceptible to the toxic effects of DEET in glass vial assays than all of the ant-derived defensive compounds/formulations. These results suggest that the ant-derived defensive compounds are likely more effective lone star tick repellents than DEET, but they are not as toxic as DEET towards the ticks. The suitability of these compounds for use as personal repellents, as well as at the landscape scale, should be explored.  相似文献   

3.
Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.  相似文献   

4.
The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca2+-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET.  相似文献   

5.
DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them.  相似文献   

6.
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.  相似文献   

7.
Matthew DeGennaro 《Fly》2015,9(1):45-51
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.  相似文献   

8.

Background

Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests.

Methodology

Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have “generic repellent detector(s),” which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the “empty neuron” and showed to be sensitive to the three insect repellents.

Conclusions

For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have also identified the insect repellent-sensitive receptor, DmOr42a. This generic detector fulfils the requirements for a simplified bioassay for early screening of test insect repellents.  相似文献   

9.
N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system.  相似文献   

10.
Insect repellents are known since many decades ago and constitute a major tool for personal protection against the biting of mosquitoes. Despite their wide use, the understanding of why and how repellents repel is relatively recent. In particular, the question about to what extent insects other than mosquitoes are repulsed by repellents remains open. We developed a series of bioassays aimed to test the performance of well established as well as potential repellent molecules on the Chagas disease vector Rhodnius prolixus. Besides testing their ability to prevent biting, we tested the way in which they act, i.e., by obstructing the detection of attractive odours or by themselves. By using three different experimental protocols (host-biting, open-loop orientation to odours and heat-triggered proboscis extension response) we show that DEET repels bugs both in the presence and in the absence of host-associated odours but only at the highest quantities tested. Piperidine was effective with or without a host and icaridine only repelled in the absence of a living host. Three other molecules recently proposed as potential repellents due to their affinity to the Ir40a+ receptor (which is also activated by DEET) did not evoke significant repellency. Our work provides novel experimental tools and sheds light on the mechanism behind repellency in haematophagous bugs.  相似文献   

11.
There is a broad understanding of the influence of environmental factors on various aspects of normal mosquito behavior. How these external factors influence responses to repellent compounds is far less clear. The objective of this study was to investigate the effect of different daytime periods combining the normal circadian activity of a laboratory colony of Aedes aegypti (L.) with behavioral responses of mosquitoes exposed to three different compounds possessing repellent properties. Using an excito-repellency test chamber with different test designs (contact irritancy + repellency and noncontact repellency), female mosquitoes were exposed to each chemical or matching blank control during four different 3-h time intervals beginning 0600 to 1800?h. Mosquitoes showed more significant avoidance responses (escape movement away from the chemical) when exposed to either DEET or hairy basil during the afternoon periods. With deltamethrin, there was no significant difference in repellent escape movement during any period of testing. Escape activity with deltamethrin was significantly greater during all diurnal periods in contact tests compared to DEET and hairy basil. From this study, it was shown that time of diurnal testing can significantly influence behavioral responses of Ae. aegypti exposed to chemical-based repellents. Therefore, the assessment of chemicals (toxins, repellents, attractants) and must carefully consider time-of-test as a potential confounding factor during evaluation and comparisons.  相似文献   

12.
Live yeasts (Saccharomyces cerevisiae) are more and more widely used as feed additives for ruminants. They are considered as allochtonous microorganisms in the rumen environment, however, distributed daily to dairy cows or beef cattle they can survive in the digestive tract and interact with autochtonous microbial populations. The positive effects of yeast cells have been mainly demonstrated on growth and activity of fibre-degrading bacteria and fungi, on stabilisation of rumen pH and prevention of lactate accumulation, on ruminal microbial colonization and on the set up of fermentative processes during the pre-weaning period. Modes of action of yeast probiotics depend on their viability and stability in the rumen ecosystem. Up to now, the main modes of action identified are the supply of growth factors to rumen microorganisms, oxygen scavenging inducing more favourable conditions for the anaerobic communities, and nutritional competition with autochtonous ruminal species. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

13.
Five essential oils and nine of their components were compared to diethyl toluamide (DEET) for their repellent activity against the human body louse, Pediculus humanus humanus. The absolute or intrinsic repellency of the compounds was tested by applying the repellent to corduroy patches and comparing them with untreated patches. It was found that the most effective repellents were DEET and citronella, whose activity lasted at least 29 days. The activity of rosemary lasted at least 18 days and that of eucalyptus more than 8 days. The repellent activity of the oil components such as citronellal and geraniol lasted more than 15 and 8 days, respectively. DEET remained effective at a dilution of 1:32, geraniol at 1:8, citronella at 1:4 and rosemary and citronellal at 1:1. The comparative or standard repellency of the candidate repellents was examined with the aid of a new screening technique using hairs treated with ammonium bicarbonate which is attractive to lice. Using this technique it could be shown that the repellent activity of citronella and geraniol lasted 2 days and that of rosemary and citronellal for only one day. DEET was active for less than one day. Serial dilutions of these substances also revealed that citronella was the most potent repellent for lice, followed by citronellal, rosemary, geraniol and DEET. The differences however, were not significant.  相似文献   

14.
The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito‐repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65–98% escape for contact, 21.4–94.4% escape for non‐contact) compared to Ae. aegypti (3.7–72.2% escape (contact), 0–31.7% (non‐contact)) and Ae. albopictus (3.5–94.4% escape (contact), 11.2–63.7% (non‐contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65–97.8% escape) than non‐contact repellents (0–50.8% escape for non‐contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes.  相似文献   

15.
叶际微生物研究进展   总被引:5,自引:0,他引:5  
植物的叶际是一个复杂的生态系统,微生物的生存环境条件严苛。其可被利用的营养成分较少,温湿度波动大。此外,较强的紫外线辐射对于叶际微生物的生存也有很大影响。但是植物叶际却有着丰富的微生物多样性,其中还有许多有益细菌和真菌。它们通过和植物寄主的互作,改善着叶际微生物的栖居环境;其对植物病原体的拮抗亦可提高植物的抗病性。植物叶际的微生物还可以产生激素以促进植物生长,还有一些微生物可以利用农药等污染有机物作为营养物质,在污染物的环境生物修复方面显示巨大的潜力。此外,叶际微生物作为一种生态学指标在生态稳定与环境安全评价中开始发挥显著的作用。  相似文献   

16.
Coping strategies including smoke screens are used against nuisance bites of Simulium damnosum Theobald (Diptera:Simuliidae) in onchocerciasis endemic communities. To find more effective alternatives, the efficacy of commercially available N,N‐diethyl‐3‐methylbenzamide (DEET) products with active concentrations of 9.5, 13, 25, 50 and 98.1–100% and ‘NO MAS,’ (active component: para‐menthane‐3,8‐diol and lemon grass oil) were tested at Bui‐Agblekame, Ghana. A Latin square study design was implemented using eight groups of two vector collectors each, who used repellents (treatment), mineral oil or nothing each day until the end of the study. Flies were caught and their numbers each hour recorded using the standard methods for onchocerciasis transmission studies. T‐tests were used to compare the mean duration of protection and a one‐way analysis of variance controlling for catchers and repellents was performed. Tukey's test was used to compare protection by repellents and mineral oil. The highest percentage protection was 80.8% by NO MAS and the least 42.5% by the 13% DEET product. The period of absolute protection was 5 h by NO MAS and 1 h by 50% DEET product. No significant increase in protection was offered beyond 25% active DEET products and no significance was observed in terms of catcher × repellent effect (F = 1.731, d.f. = 48, P = 0.209).  相似文献   

17.
Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.  相似文献   

18.
The attachment of microorganisms onto biotic surfaces to form biofilm structures on the support media of a biofilter has great impact on biodegradation systems. This study examined the composition of the microbial community that developed on grape seeds (GS) used as support media in methanol degradation biofilters. They were analyzed using conventional microbiology techniques and API galleries. Analysis of microbial counts showed that, in GS before methanol exposure, bacteria and filamentous fungi were predominant over yeasts. In contrast, GS exposed to methanol exhibited more bacteria and yeasts than fungi. Most of the Gram-negative bacteria were the Pseudomonas genus, Bacillus staerothermophilus, Bacillus amyloliquefaciens, and Bacillus pumilus. Rhodotorula mucilaginosa was the primary yeast found. The filamentous fungi Aspergillus sp. Cladosporium cladosporioides, Fusarium sp., and Alternaria sp. were also detected. No Gram-positive bacteria growth was found on GS exposed to methanol. Using scanning electron microscopy, biofilm formation on the GS was examined to reveal the presence of both prokaryotic and eukaryotic microorganisms as biomass accumulation was visible on the seeds. Seeds exposed to methanol for 90 days showed a mature biofilm with cuticle and epidermal layer decline, as well as biofilm dissolution into grape seed integuments.  相似文献   

19.
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.  相似文献   

20.
The knock-down, mortality and 'irritancy' effects of three synthetic repellents (DEET, IR3535 and KBR 3023) on Aedes aegypti (L) (Diptera: Culicidae) were evaluated in the laboratory in the absence of animal bait. Filter paper tests were carried out to assess the knock-down effect (KDt(50) and KDt(95)) and mortality (LC(50) and LC(95)) induced by each repellent. 'Irritancy' tests were carried out to compare the flight response (time to first take-off, or FT) to increasing concentrations of repellents (2-7%) and at five distances from the treated surface (0-40 mm). DEET had an insecticidal effect (KDt(50) = 9.7 min at 7%; CL(50)= 1165 mg/m(2)), whereas IR3535 and KBR 3023 did not. Relative to an untreated control, IR3535 was an irritant (relative irritancy or RI > 1) at doses of 5% and 7% (RI = 17.7 and 9.9, respectively), whereas DEET was an irritant at lower concentrations (RI = 12.3 at 2% DEET). KBR 3023 was the weakest irritant over the same range of concentrations (RI(max) = 3.6 at 6%). DEET was more of an irritant (RI(20) = 9.4) than IR3535 (RI(20) = 2.9) over a range of distances (0-20 mm), and KBR 3023 was not an irritant unless mosquitoes made contact with the treated surface. All three repellents had a significant effect on mosquitoes, but DEET exhibited a more complex mode of action than the others due to its insecticidal properties. The repellents do not behave as a single class of compounds with a common mode of action, but most probably affect different physiological systems in insects. The physiological and molecular mechanisms of repellents, especially DEET, should be investigated to ensure a better use of these molecules for skin applications and/or for treating materials against mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号