首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H2), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O2, CO2, N2, and H2 was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO2 and O2. The amount of H2 produced per molecule of N2 fixed was found to vary with light conditions, high light giving a greater increase in H2 production than N2 fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H2 produced per molecule of N2 fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO2, caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 μmol (mg of chlorophyll a)−1 h−1 to 9 μmol (mg of chlorophyll a)−1 h−1 after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.  相似文献   

2.
Rhodospirillum rubrum is able to produce H2 during fermentation anaerobically in the dark in two ways, namely through formate hydrogen lyase and through the nitrogenase. After chemotrophic preculture aerobically in the dark formate hydrogen lyase was synthesized after a lag phase, whilst after phototrophic preculture a slight activity was present from the beginning of the anaerobic dark culture. During fermentation metabolism its activity increased noticeably. Hydrogen production through the nitrogenase occurred if the nitrogenase had been activated during phototrophic preculture. It ceased during fermentation metabolism after about 3 1/2 h anaerobic dark culture. The CO insensitive H2 production by the nitrogenase could be partially inhibited by N2. Potential activity of this system, however, remained and could be increased under conditions of nitrogenase induction. It seems therefore possible that synthesis of nitrogenase under N-deficiency can occur during fermentation metabolism in the same way as the formation of the photosynthetic apparatus in order to prepare for subsequent phototrophic metabolism.Abbreviations CAP chloramphenicol - DSM Deutsche Sammlung von Mikroorganismen, Göttingen - FHL formate hydrogen lyase - O.D optical density - PFL pyruvate formate lyase  相似文献   

3.
To explain the decrease of hydrogen production rate in the batch culture of Rhodobacter sphaeroides S, the activities of enzymes related to the TCA cycle, nitrogenase in cell-free extracts, ATP generation by chromatophores, and ferredoxin were examined at the beginning, middle and end of the hydrogen production phase of batch culture. The activities of TCA cycle enzymes, nitrogenase and ATP generation were found to remain at almost the same level throughout the culture, while ferredoxin activity decreased linearly with time. In addition, by bubbling N2 gas into the culture broth at the end of the culture, the hydrogen production rate was restored to the initial level through the increase of the ferredoxin activity. Although the decrease of ferredoxin activity and its restoration by bubbling N2 gas remained unexplained, ferredoxin activity was considered to be a key function in the nitrogenase system for H2 production by this photosynthetic bacterium.  相似文献   

4.
The role of the oxyhydrogen reaction in the nitrogen metabolism of Anabaena cylin-drica, particularly under conditions of dinitrogen starvation, was investigated. It was shown that although this reaction supports nitrogenase activity in the dark, when the cells are deprived of nitrogen the rate of hydrogen uptake is little changed. Measurements of ammonia excretion into the medium in the presence of methionine sulfoximine under such conditions indicated that hydrogen uptake supported the turnover of cell protein as an alternative source of nitrogen. In the absence of H2 and O2 in the dark, nitrogenase activity was negligible but protein turnover continued. In their presence nitrogenase activity was greatly stimulated; turnover was also stimulated but to a greater extent in the absence of nitrogenase substrates. The oxyhydrogen reaction also stimulated uptake of ammonium ions by intact filaments in argon in the dark. Only at very low hydrogen tensions can net hydrogen formation be obtained in argon/CO2 in the light, casting considerable doubt on the suitability of hydrogenase-containing organisms for biophotolytic hydrogen formation. Addition of exogenous ammonia to the cultures incubated in argon resulted in a pronounced stimulation of H2 uptake; nitrate and its derivatives had no such effect, nor did various amino acid derivatives of ammonia.  相似文献   

5.
A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H2O2 could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.  相似文献   

6.
Adenylate-pool composition, energy charge, and nitrogenase activity were examined in isolated heterocysts from Anabaena variabilis (ATCC 29413). ATP formation was detected as a light- or oxygen-induced increase in ATP concentration. No cofactors or substrates had to be added for photophosphorylation to occur, whereas oxidative phosphorylation was dependent on hydrogen and oxygen (Knallgas reaction). The increase in ATP concentration was reflected by a decrease in AMP concentration, accompanied by small changes in ADP levels. Thus, a regulation of the adenylate pool by a myokinase (adenylate kinase) has to be assumed. Upon dark-light transitions, the energy charge in heterocysts increased from values below 0.4 to values approaching 0.8. High energy-charge values, reached in the light only, allowed for high rates of acetylene reduction in the presence of hydrogen. The increase in the energy charge in the dark to approx. 0.64 by addition of oxygen (5% (vv) in the presence of hydrogen) resulted in low nitrogenase activities, generally not exceeding 1–3% of the light-induced rates. In the dark, oxygen concentrations above 10% were inhibitory to both ATP formation and acetylene reduction. Increasing light intensities led to a steep increase in energy charge followed by an increase in nitrogenase activity. Plotting enzyme activity versus energy charge, a nonlinear, asymptotic relationship was observed.  相似文献   

7.
In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.  相似文献   

8.
In the case of nitrogenase-based photobiological hydrogen production systems of cyanobacteria, the inactivation of uptake hydrogenase (Hup) leads to significant increases in hydrogen production activity. However, the high-level-activity stage of the Hup mutants lasts only a few tens of hours under air, a circumstance which seems to be caused by sufficient amounts of combined nitrogen supplied by active nitrogenase. The catalytic FeMo cofactor of nitrogenase binds homocitrate, which is required for efficient nitrogen fixation. It was reported previously that the nitrogenase from the homocitrate synthase gene (nifV) disruption mutant of Klebsiella pneumoniae shows decreased nitrogen fixation activity and increased hydrogen production activity under N2. The cyanobacterium Nostoc sp. strain PCC 7120 has two homocitrate synthase genes, nifV1 and nifV2, and with the ΔhupL variant of Nostoc sp. strain PCC 7120 as the parental strain, we have constructed two single mutants, the ΔhupL ΔnifV1 strain (with the hupL and nifV1 genes disrupted) and the ΔhupL ΔnifV2 strain, and a double mutant, the ΔhupL ΔnifV1 ΔnifV2 strain. Diazotrophic growth rates of the two nifV single mutants and the double mutant were decreased moderately and severely, respectively, compared with the rates of the parent ΔhupL strain. The hydrogen production activity of the ΔhupL ΔnifV1 mutant was sustained at higher levels than the activity of the parent ΔhupL strain after about 2 days of combined-nitrogen step down, and the activity in the culture of the former became higher than that in the culture of the latter. The presence of N2 gas inhibited hydrogen production in the ΔhupL ΔnifV1 ΔnifV2 mutant less strongly than in the parent ΔhupL strain and the ΔhupL ΔnifV1 and ΔhupL ΔnifV2 mutants. The alteration of homocitrate synthase activity can be a useful strategy for improving sustained photobiological hydrogen production in cyanobacteria.  相似文献   

9.
The bladders of Geosiphon pyriforme, an endosymbiotic consortium of a fungus and the cyanobacterium Nostoc punctiforme, show nitrogenase activity. This suggests that the organism is capable of nitrogen fixation.  相似文献   

10.

Background

Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase.

Results

An engineered strain lacking a functional uptake hydrogenase (?hupS) produced about 4-folds more hydrogen than the wild type strain. Moreover, the ?hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ?hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ?hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ?hupS strain.

Conclusions

Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.
  相似文献   

11.
Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes. We could identify a significant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled Photosystem II complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.  相似文献   

12.
Pilot-scale fermentation is one of the important processes for achieving industrialization of biogenic coalbed methane (CBM), although the mechanism of biogenic CBM remains unknown. In this study, 16 samples of formation water from CBM production wells were collected and enriched for methane production, and the methane content was between 3.1 and 21.4%. The formation water of maximum methane production was used as inoculum source for pilot-scale fermentation. The maximum methane yield of the pilot-scale fermentation with lump anthracite amendment reached 13.66 μmol CH4/mL, suggesting that indigenous microorganisms from formation water degraded coal to produce methane. Illumina high-throughput sequencing analysis revealed that the bacterial and archaeal communities in the formation water sample differed greatly from the methanogic water enrichment culture. The hydrogenotrophic methanogen Methanocalculus dominated the formation water. Acetoclastic methanogens, from the order Methanosarcinales, dominated coal bioconversion. Thus, the biogenic methanogenic pathway ex situ cannot be simply identified according to methanogenic archaea in the original inoculum. Importantly, this study was the first time to successfully simulate methanogenesis in large-capacity fermentors (160 L) with lump anthracite amendment, and the result was also a realistic case for methane generation in pilot-scale ex situ.  相似文献   

13.
A tritium exchange assay and a sensitive gas chromatographic technique were used to demonstrate that hydrogenase was active and that hydrogen was produced by Methanosarcina barkeri strain MS grown on acetate. Both methane and hydrogen production rates were dependent on the concentration of acetate in the medium. H2 was produced at 0.5–2% of the rate of CH4 formation. Chloroform and potassium cyanide, inhibitors of methanogenesis from acetate, inhibited H2 production but not hydrogenase activity. The addition of hydrogen gas to cell suspensions did not inhibit CH4 or carbon dioxide production from the methyl group of acetate. H2 production appears to be linked to several intracellular redox processes which follow the cleavage of acetate.  相似文献   

14.
A hydrogen gas (H2)-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H2 with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H2 production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity.  相似文献   

15.
Summary Nitrogen fixing cultures of the cyanobacteriumNostoc muscorum lacked hydrogen evolution but cultures infected with cyanophage N-1 showed significant hydrogen evolution and inactive nitrogenase, suggesting that nitrogenase activity is not responsible for the observed oxygen-resistant photoproduction of hydrogen. Significant oxygen-resistant hydrogen production by nitrate or ammonium assimilating cultures deficient in both nitrogenase and uptake hydrogenase activity supports this conclusion. These findings suggest a role of uptake hydrogenase in blocking the production of hydrogen during aerobic photosynthetic conditions.  相似文献   

16.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

17.
Thermophilic, nitrogen-fixing, blue-green algae (cyanobacteria) were investigated for use in biophotolysis. Three strains of Mastigocladus laminosus were tested and were found to be equally effective in biophotolysis as judged by nitrogenase activity. The alga, M. laminosus NZ-86-m, which was chosen for further study, grew well in the temperature range from 35 to 50°C, with optimum growth at 45°C, at which temperature acetylene reduction activity was also greatest. The maximum tolerable temperature was 55°C. Acetylene reduction activity was saturated at a light intensity of 1 × 104 ergs cm−2 s−1. Atmospheric oxygen tension was found to be slightly inhibitory to acetylene reduction of both slowly growing and exponentially growing cultures. Nonsterile continuous cultures, which were conducted to test problems of culture maintenance, could be operated for 2 months without any significant decrease in nitrogenase activity or contamination by other algae. Nitrogen-starved cultures of M. laminosus NZ-86-m produced hydrogen at comparable rates to Anabaena cylindrica. The conversion efficiency of light to hydrogen energy at maximum rates of hydrogen production was 2.7%.  相似文献   

18.
Stefan Nordlund  Ulla Eriksson 《BBA》1979,547(3):429-437
Nitrogenase activity of ‘membrane-free’ extracts, produced from nitrogenstarved Rhodospirillum rubrum to which 4 mM NH+4 had been added is only about 10% of the activity in the control. The activity could be restored to 80% by including the membrane component, earlier found to activate R. rubrum nitrogenase, in the reaction mixture. The relation between this ‘switch-off/switch-on’ effect and the function of the membrane component is discussed.Hydrogen production catalyzed by R. rubrum nitrogenase is also dependent on activation by the membrane component. Hydrogen production is inhibited by acetylene but the degree of inhibition is dependent on the nitrogenase component ratio. The strongest inhibition is achieved at low MoFe protein/Fe protein ratios. The ATP2 e? values are 4–5 at the component ratios giving the highest activity and increase at high MoFe protein/Fe protein ratios. CO inhibits acetylene reduction but has no effect on the hydrogen production.  相似文献   

19.
The time course of hydrogen formation by Anabaena cylindrica was followed beneath an argon atmosphere alone and also beneath atmospheres of argon, nitrogen, and air in the presence of carbon monoxide (0.2%) and acetylene (5%). Hydrogen production beneath argon alone was comparable in rate and duration (7 to 12 days) to that which occurred beneath air in the presence of carbon monoxide (0.2%) and acetylene (5%). However, much greater longevity (16 to 26 days) and improved rates of hydrogen formation were obtained when algae were incubated beneath argon and particularly nitrogen, each supplemented with carbon monoxide and acetylene. The total hydrogen produced by these cultures was up to three times as much as that released by cultures incubated beneath argon alone. Hydrogen-oxygen ratios for argon cultures either with or without carbon monoxide and acetylene were initially 1:5 but approximated 1:2 when measured over the entire incubation period. In each case oxygen production and nitrogenase activity (acetylene reduction) continued at reduced rates after hydrogen evolution had ceased. The effects of methionine sulfoximine (2 μM), ammonium ions (0.5 mM), or both on oxygen production were generally negligible, while effects on hydrogen production were variable depending on the atmosphere used; in most cases, eventual destabilization of the system occurred. A brief comparison was made of the time courses of anaerobic and aerobic hydrogen formation by the marine cyanobacterium Calothrix membranacea. It was found that shaking of cultures was beneficial for hydrogen production but not strictly necessary. It is concluded that hydrogen production by A. cylindrica in air and particularly nitrogen in the presence of carbon monoxide and acetylene offers the best potential of the atmospheres considered on the basis of four criteria: rates and longevity of hydrogen formation, practicality of the atmosphere used, and tolerance of hydrogen evolution to slight changes in composition of the atmosphere.  相似文献   

20.
Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号