首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.  相似文献   

2.
In response to mechanical damage, roots of Scutellaria baicalensis undergo cell death within 24 h. The flavone baicalein was identified as the factor regulating apoptosis in the damaged roots of S. baicalensis. Plant apoptosis is known to be triggered by oxidative damage of DNA through oxidative bursts, whereas baicalein causes apoptosis in Scutellaria cells by a copper-dependent oxidation of nuclear DNA without inducing an oxidative burst. S. baicalensis possesses an interesting system for quickly producing this apoptosis-inducing flavone in its cells. Intact Scutellaria cells contain little baicalein but store a large amount of baicalin (baicalein 7-O-β-D-glucuronide). Stress treatment of Scutellaria cells immediately initiates hydrolysis of baicalin by endogenous β-glucuronidase, and the resulting baicalein is immediately translocated to the nucleus, leading to apoptosis. Thus, S. baicalensis possesses a unique apoptosis-inducing system that is linked with metabolism of baicalin.  相似文献   

3.
This study analyzed the effects of ecological factors on secondary metabolites of Scutellaria baicalensis using two sources: 92 individual roots of S. baicalensis from all over China, and secondary metabolites, medicinal materials and inorganic element contents obtained from the testing of 92 S. baicalensis rhizosphere soil samples. The study used environmental data from the Genuine Medicinal Material Spatial Analysis Database. Most of the chemical constituents of S. baicalensis were negatively correlated to latitude and positively correlated to temperature; generally, the contents of 21 chemical constituents were higher at low latitudes than that at high latitudes. By gradual regression analysis, it was found that the content of baicalin in S. baicalensis was negatively correlated to latitude and generally the content of inorganic elements in soil was excessively high (excluding Mg and Ca), which has a negative effect on the accumulation of chemical constituents in S. baicalensis. Based on the cluster analysis of 21 constituents, S. baicalensis from different places of origin was divided into two groups, and S. baicalensis was not genuine only in a specific small region. Within the zone from Chifeng, Inner Mongolia to Taibai, Shaanxi is suitable for accumulation of secondary metabolites of S. baicalensis and such a zone represents a suitable distribution and potential genuine producing area.  相似文献   

4.
Scutellaria is a geographically widespread and diverse genus of the Lamiaceae family of herbaceous plants commonly known as skullcaps. Scutellaria is used widely as an ethnobotanical herb for the treatment of various ailments ranging from cancers, cirrhosis, jaundice, hepatitis, anxiety and nervous disorders. We used (1) reverse-phase liquid chromatography coupled to a diode array detector (LC-DAD), and (2) multiple reaction monitoring (MRM) using mass spectrometry (LC-MS/MS) to quantify the levels of acteoside, scutellarin, scetellarein, baicalin, baicalein, wogonin, wogonoside, apigenin, chrysin, and oroxylin A in aqueous methanolic extracts of roots, shoots and leaves of S. baicalensis, S. lateriflora, S. racemosa, S. tomentosa and S. wrightii. Our results indicate that both methods (LC-DAD and LC-MS/MS) were robust for the detection of the 10 analytes from Scutellaria extracts although greater sensitivities were achieved using LC-MS/MS in MRM mode. MRM enabled the detection of low levels of analytes which were otherwise undetected using LC-DAD. The baicalin content of S. wrightii roots were 5-fold higher than the commonly used S. baicalensis. Additionally, we also showed that leaves of both S. wrightii and S. tomentosa are good sources of scutellarin compared to S. baicalensis. Our data clearly demonstrated that previously uncharacterized species, S. wrightii and S. tomentosa are both good sources of flavonoids, particularly scutellarin, baicalin, wogonin and baicalein.  相似文献   

5.
Scutellaria baicalensis Georgi has long been used in traditional medicine to treat various such widely varying diseases and has been listed in the Chinese Pharmacopeia, the Japanese Pharmacopeia, the Korean Pharmacopoeia and the European Pharmacopoeia. Flavonoids, especially wogonin, wogonoside, baicalin, and baicalein, are its main functional ingredients with various pharmacological activities. Although pharmaological studies for these flavonoid components have been well conducted, the molecular mechanism of their biosynthesis remains unclear in S. baicalensis. In this study, Illumina/Solexa deep sequencing generated more than 91 million paired-end reads and 49,507 unigenes from S. baicalensis roots, stems, leaves and flowers. More than 70% unigenes were annotated in at least one of the five public databases and 13,627 unigenes were assigned to 3,810 KEGG genes involved in 579 different pathways. 54 unigenes that encode 12 key enzymes involved in the pathway of flavonoid biosynthesis were discovered. One baicalinase and three baicalein 7-O-glucuronosyltransferases genes potentially involved in the transformation between baicalin/wogonoside and baicalein/wogonin were identified. Four candidate 6-hydroxylase genes for the formation of baicalin/baicalein and one candidate 8-O-methyltransferase gene for the biosynthesis of wogonoside/wogonin were also recognized. Our results further support the conclusion that, in S. baicalensis, 3,5,7-trihydroxyflavone was the precursor of the four above compounds. Then, the differential expression models and simple sequence repeats associated with these genes were carefully analyzed. All of these results not only enrich the gene resource but also benefit research into the molecular genetics and functional genomics in S. baicalensis.  相似文献   

6.
The aim of this study was to investigate the effect of phenylalanine ammonia lyase (PAL) and isochorismate synthase (ICS) on free salicylic acid (FSA) or total salicylic acid (TSA) content, and the effect of endogenous SA on baicalin and baicalein accumulation in Scutellaria baicalensis Georgi, respectively. We amplified partial sequences of PAL and ICS genes in Scutellaria baicalensis Georgi and silenced the two genes with virus-induced gene silence (VIGS) technique, respectively. The influence of gene silence on FSA, TSA, baicalin, and baicalein accumulation in Scutellaria baicalensis Georgi were analyzed, and these parameters were also investigated under high temperature. Results indicated that PAL silence significantly affected the FSA, ICS affected TSA content. FSA significantly affected the baicalin, rather than baicalein content. Our results along with previous studies indicated PAL and ICS were different in the regulation of FSA or TSA synthesis, and FSA and TSA were different in the regulation of baicalin and baicalein synthesis in Scutellaria baicalensis Georgi.  相似文献   

7.
Scutellaria baicalensis (S. baicalensis) and Scutellaria barbata (S. barbata) are common medicinal plants of the Lamiaceae family. Both produce specific flavonoid compounds, including baicalein, scutellarein, norwogonin, and wogonin, as well as their glycosides, which exhibit antioxidant and antitumor activities. Here, we report chromosome-level genome assemblies of S. baicalensis and S. barbata with quantitative chromosomal variation (2n = 18 and 2n = 26, respectively). The divergence of S. baicalensis and S. barbata occurred far earlier than previously reported, and a whole-genome duplication (WGD) event was identified. The insertion of long terminal repeat elements after speciation might be responsible for the observed chromosomal expansion and rearrangement. Comparative genome analysis of the congeneric species revealed the species-specific evolution of chrysin and apigenin biosynthetic genes, such as the S. baicalensis-specific tandem duplication of genes encoding phenylalanine ammonia lyase and chalcone synthase, and the S. barbata-specific duplication of genes encoding 4-CoA ligase. In addition, the paralogous duplication, colinearity, and expression diversity of CYP82D subfamily members revealed the functional divergence of genes encoding flavone hydroxylase between S. baicalensis and S. barbata. Analyzing these Scutellaria genomes reveals the common and species-specific evolution of flavone biosynthetic genes. Thus, these findings would facilitate the development of molecular breeding and studies of biosynthesis and regulation of bioactive compounds.  相似文献   

8.
9.
10.
11.
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4′-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4′-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3′-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4′-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.  相似文献   

12.
Cultivating medical plants is an efficient way not only to meet the increasingly high demand for plant-based drugs but also to protect wild populations from overexploitation. The environments of cultivation areas should be suitable for both plant growth and accumulation of bioactive constituents. Scutellaria baicalensis Georgi (Huang-qin or Chinese skullcap) is a widely used herb that is suffering rapid population decline in China. To promote better cultivation of this herb, this paper reports a new approach for predicting potentially suitable cultivation areas and for building a mathematical relationship between environmental factors and the active ingredient content in S. baicalensis using the Maxent model and multiple linear regression. The results showed that extreme temperatures and precipitation had considerable impacts on the potential distribution of S. baicalensis. Higher annual mean temperature, precipitation seasonality, and lower isotherms contributed to higher baicalin content. The potential cultivation areas for S. baicalensis were mainly distributed in northeast China. Northeastern Inner Mongolia, part of Hebei and the regions in southwestern Liaoning Province were found to be highly suitable for cultivating S. baicalensis in China. The results of this study can allow growers and pharmaceutical companies to identify suitable areas for planting herbs, which could prevent the blind cultivation of this species in unsuitable habitats while ensuring the quality of S. baicalensis.  相似文献   

13.
Based on our previous observation, the whole Scutellaria baicalensis extract (SbE) did not show significant breast cancer cell inhibitory effect. In this study, we isolated a baicalin-deprived-fraction (SbF1) of Scutellaria baicalensis, and baicalin-fraction (SbF3), and evaluated their anti-breast cancer properties using MCF-7 cells. The content of four flavonoids in extract/fractions were determined using high performance liquid chromatography. Analytical data showed that in SbF1, the major constituents are baicalein and wogonin, while SbF3 only contains baicalin. The antiproliferative effects of fractions and SbE were assayed using modified trichrome stain method. SbF1 showed significant antiproliferative effect. Treated with 100 μg/ml of SbF1 for 72 h inhibited MCF-7 cell growth by 81.6%, while in the same treatment concentration, SbF3 increased cell growth by 22.6%. SbF1 was recognized as an active fraction of SbE. The effects of four flavonoids in SbE, scutellarin, baicalin, baicalein and wogonin, were determined, and data showed that baicalein and wogonin significantly inhibited MCF-7 cell growth. In contrast, in certain concentrations, scutellarin and baicalin increased cancer cell growth. The effects of SbF1 on cell cycle and apoptosis were assayed using flow cytometry. SbF1 arrested MCF-7 cells in S- and G2/M-phases, and significantly increased induction of cell apoptosis. These combined phytochemical and biological data provide evidence for further chemopreventive studies of the baicalin-deprived SbE on breast cancer.  相似文献   

14.
Genetically transformed roots (hairy roots) and callus tissue of skullcap (Scutellaria andrachnoides Vved.) were for the first time introduced in the in vitro culture. S. andrachnoides is the endemic plant of the Kyrgyzstan. These cultures were characterized by active and stable growth in the hormone-free liquid Gamborg nutrient medium. The growth rate of undifferentiated callus tissue was higher than that of hairy roots, which were the source of this callus. The composition of secondary metabolites in hairy roots, callus tissue, and also the roots of seedlings and adult S. andrachnoides plants was analyzed. It was found that S. andrachnoides hairy roots and callus culture retained the ability for the synthesis of flavones typical for the roots of intact plants. Substantial quantitative differences in secondary metabolites were observed between the roots of juvenile and adult plants. In the seedling roots, which like hairy roots have no secondary thickening, wogonoside, a wogonin glucuronide, predominated among flavones. In the roots of adult plants growing due to the secondary thickening, balcalin, a baicalein glucuronide, was a dominating flavon. It is proposed to use the large-scale in vitro cultivation of roots and especially the rapidly growing callus tissue of S. andrachnoides with a profitable content of only one group of flavones for the development of the biotechnological method for producing wogonin and creating on its basis a new drug — a valuable anticancer agent of plant origin with selective cytotoxic activity.  相似文献   

15.
16.
St-20 and St-7 lines were isolated from the stem callus of Scutellaria baicalensis Georgi on indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid media, respectively. The flavonoid content of St-20 line was superior to that of St-7 line. The growth and flavonoid (baicalin, baicalein, wogonin and wogonin-7-0-glucuronide) content in St-20 line were best on Linsmaier-Skoog's basal medium containing 10-7 M–10-5 M kinetin. St-20 line showed the same flavonoid content and pattern as the root of parent plant after the culture period of 70 days.  相似文献   

17.
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.  相似文献   

18.
The roots of Scutellaria baicalensis are a major traditional Chinese medicine. We report research on induction, characteristics and chemical analysis of polyploid plants of S. baicalensis. Immersing calluses in 0.2% colchicine solution for 12 h prior to culture induced a high number of tetraploid plants. The induction rate reached as high as 40% of treated calluses. More than 50 lines of tetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. Twenty selected tetraploid lines were transferred to the field for determination of morphological characteristics and for chemical assays. Seven elite lines have been selected for further selection and breeding into new varieties for commercial production.  相似文献   

19.
From the roots of Scutellaria baicalensis two new di-C-glycosylflavones have been isolated. Their structures have been established on the basis of mass, 1H and 13C NMR spectroscopy as chrysin 6-C-glucoside-8-C-arabinoside and chrysin 6-C-arabinoside-8-C-glucoside.  相似文献   

20.
For the first time, the platinum accumulation levels and distribution patterns in the soil and in roots, stems, leaves, flowers, and seeds of medicinal herb Scutellaria baicalensis Georgi, Lamiaceae (Baikal skullcap) have been researched using the stripping voltammetry method. The plants were collected both in their natural habitats (southwestern part of Primorskii krai, Amur oblast, and Chita oblast) and from the S. baicalensis population introduced in the Central Siberian Botanical Garden (CSBG), Siberian Branch, Russian Academy of Sciences (Novosibirsk). In the habitats of S. baicalensis, the content of platinum in soils varies from 0.001 to 0.426 g/t. The content of platinum in various parts of the plants varies from 0.001 to 0.43 g/t. The platinum bioaccumulation factor in S. baicalensis individuals collected in various habitats varies from 0.01 to 6.1 g/t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号