首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effects of various refolding additives, including metal cofactors, organic co‐solvents, and ionic liquids, on the refolding of horseradish peroxidase (HRP), a well‐known hemoprotein containing four disulfide bonds and two different types of metal centers, a ferrous ion‐containing heme group and two calcium atoms, which provide a stabilizing effect on protein structure and function, were investigated. Both metal cofactors (Ca2+ and hemin) and ionic liquids have positive impact on the refolding of HRP. For instance, the HRP refolding yield remarkably increased by over 3‐fold upon addition of hemin and calcium chloride to the refolding buffer as compared to that in the conventional urea‐containing refolding buffer. Moreover, the addition of ionic liquids [EMIM][Cl] to the hemin and calcium cofactor‐containing refolding buffer further enhanced the HRP refolding yield up to 80% as compared to 12% in conventional refolding buffer at relatively high initial protein concentration (5 mg/ml). These results indicated that refolding method utilizing metal cofactors and ionic liquids could enhance the yield and efficiency for metalloprotein.  相似文献   

2.
In this paper, structural and dynamical properties of five imidazolium-based ionic liquids (ILs) [amim]Br (a = methyl, ethyl, butyl, pentyl, hexyl) were studied by molecular dynamics simulations. United atom force field (UAFF) has been used for the representation of the interaction between ions. Good agreement with experimental data was obtained for the simulated density based on the UAFF. The calculated densities gradually decrease with an increase in the length of alkyl side chain, which is a result of weakening the electrostatic interaction between ions. The simulated heats of vaporisation are higher than that of non-ILs and decrease with an increase in temperature. Radial distribution function (RDF) was employed to analyse the local structure of ILs. Cation–anion RDFs show that the anions are well organised around the cation in two shells (0.41 and 0.6 nm). The velocity autocorrelation functions of the anion and cations show that the relaxation time increased with an increase in the length of the alkyl side chain. The diffusion coefficients of ions were calculated by mean square displacement of the centre of mass of the ions at 400 K. The calculated diffusion coefficients using UAFF agree well with other all atom force fields. Also diffusion coefficients decrease with an increase in the length of the alkyl side chain. The calculated transference numbers show that the cation contributes more than anion in the electrical current. The diffusion coefficients increase with temperature.  相似文献   

3.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

4.
Soluble preparations of horse radish peroxidase are obtained by means of its amino groups modification with glutaric aldehyde, maleic anhydride and inert proteins including albumin. The enzyme activity is found to decrease under the modification with glutaric aldehyde and to be unchanged at all other cases. Thermal stability of the enzyme preparations obtained is studied within the temperature range from 56 to 80 degrees C. Thermostability of glutaric aldehyde-modified peroxidase is approximately 2.5-fold decreased at 56 degrees C. Thermostability of other preparations exceeds the stability of native peroxidase in 25--90 times at 56 degrees C. Thermodynamic parameters of activation for the process of irreversible thermoinactivation of native and modified enzyme are calculated. A strong compensation effect between activation enthalpy and entropy values is observed, which were changed in 1.5--2 times, while the free activation energy is changed by 2--3 kcal/mol only. Possible mechanism of the change of the enzyme thermal stability under its chemical modification is discussed.  相似文献   

5.
The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide (H2O2) was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of [BMIM][BF4] increased for the oxidation of guaiacol by HRP, the K(m) value increased with a slight decrease in the k(cat) value: The K(m) value increased from 2.8 mM in 100% (v/v) water to 22.5 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.  相似文献   

6.
The conversion of sphingosine to sphingosine-1-phosphate is catalyzed by sphingosine kinase (SphK), which has been implicated in disease states such as cancer and fibrosis. Because SphK exists as two different isoforms, SphK1 and SphK2, understanding the physiological function of each isoenzyme is important. Of the two isoenzymes, SphK2 is significantly less understood, which is evident by the lack of selective small molecule inhibitors. Building on our initial work that focused on the structure–activity relationship study on an FTY720-derived cylohexylamine scaffold, we report that varying the alkyl chain length on the hydrophobic tail can impart selectivity toward SphK2 over SphK1.  相似文献   

7.
The effect of cobalt ions (Co2+) on horseradish peroxidase (HRP) was studied in vitro by enzymatic activity assay, electronic absorption spectra, intrinsic fluorescence spectra and 8-anilo-1-naphthalenesulfonate(ANS)-binding fluorescence spectra. Co2+ at concentrations below 0.1 mM mildly increased the HRP activity, whereas higher concentrations of Co2+ significantly inactivated HRP in a time and concentration-dependent manner. Steady-state kinetic studies show that Co2+ was a noncompetitive inhibitor of o-dianisidine oxidation by HRP. The Ki value dropped as the incubation time increased. Furthermore, Co2+ was found to be an uncompetitive inhibitor of H2O2. These results suggested that Co2+ would slowly bind to the enzyme and progressively induce conformational changes. Spectroscopic analysis showed that even for high Co2+ concentrations, the structure of HRP as a whole only changed slightly; however, there were significant conformational changes near or in the active site of HRP. Based on the above results, we suggest that Co2+ may bind with some amino acids near or in the active site of HRP and the conformational changes of HRP induced by such binding should be the main reason for activation and inactivation effect of Co2+. The potential binding sites of Co2+ were also proposed.  相似文献   

8.
Role of oxygen during horseradish peroxidase turnover and inactivation   总被引:1,自引:0,他引:1  
Horseradish peroxidase catalyzed oxidation of phenol has been reinvestigated to determine the requirements of facile enzyme autoinactivation. Turnover of this peroxidase was monitored spectrophotometrically at 400 nm and found dependent on the concentration of phenol and hydrogen peroxide. The inactivation of the peroxidase required both substrates, phenol and H2O2, but surprisingly was also potentiated by molecular oxygen. Exclusion of diffusible superoxide or hydroxyl radicals had slight effect on product formation or loss of catalytic activity. A mechanism is proposed to explain the unanticipated role of oxygen during enzyme inactivation.  相似文献   

9.
The activity and secondary structure of horseradish peroxidase (HRP) was studied in aqueous solution containing alpha-, beta- and gamma-cyclodextrin (CD). The results showed that the activity of HRP was enhanced to different extents by the three kinds of CD. A Fourier Transform infrared (FTIR) spectroscopy study indicated that the amount of alpha-helical structure was important for the activity of HRP. This phenomenon is discussed.  相似文献   

10.
J Wang  G Meng  K Tao  M Feng  X Zhao  Z Li  H Xu  D Xia  JR Lu 《PloS one》2012,7(8):e43478

Background

Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification.

Methodology/Principal Findings

Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining.

Conclusions/Significance

The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.  相似文献   

11.
Kyoko Fujita  Hiroyuki Ohno 《Biopolymers》2010,93(12):1093-1099
Hydrated choline dihydrogen phosphate (Hy[ch][dhp]) containing 30 wt% water was investigated as a novel protein solvent. The Hy[ch][dhp] dissolved some metallo proteins (cytochrome c, peroxidase, ascorbate oxidase, azurin, pseudoazurin and fructose dehydrogenase) without any modification. These proteins retained the surroundings of the active site after dissolution in Hy[ch][dhp]. Some metallo proteins were found to retain their activity in the Hy[ch][dhp]. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1093–1099, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
13.
BackgroundHorseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated.MethodsHRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow.ResultsNitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO) > 4-OH-TPO > 3-carbamoyl proxyl > 4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III.ConclusionsNitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex.General SignificanceNitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo.  相似文献   

14.
Horseradish peroxidase (HRP) was used as a marker to study the effects of microtubule-disruptive drugs on uptake and cellular inactivation of exogenous material in cultures of embryonic chick chondrocytes. HRP was ingested by fluid endocytosis, and intracellular enzyme activity subsequently diminished exponentially with time. Cytochemically, reaction product for HRP was found in vesicles often located close to the dictyosomes of the Golgi complex. Colchicine and vinblastine caused disappearance of cytoplasmic microtubules and disorganization of the Golgi complex with concomitant reduction in the cellular uptake of HRP to about half of that in the controls. Lumicolchicine, on the other hand, left cell fine structure and HRP uptake unaffected. These results indicate that microtubules are of considerable importance in the process of fluid endocytosis in cultured chondrocytes although the exact mechanism remains to be elucidated. The rate of intracellular inactivation of ingested HRP was not affected by colchicine or vinblastine. Double-labeling experiments with colloidal thorium dioxide and HRP likewise indicated that fusion of endocytic vesicles and lysosomes is not dependent on intact microtubules. The total specific activities of the three lysosomal enzymes examined were weakly or not at all changed by treatment of the cultures with colchicine or vinblastine. It therefore seems unlikely that microtubular organization plays an important role in the production or degradation of lysosomal enzymes in cultured chondrocytes.  相似文献   

15.
W D Ellis  H B Dunford 《Biochemistry》1968,7(6):2054-2062
  相似文献   

16.
Abstract

The activity and stability of commercial peroxidase was investigated in the presence of five 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) with either bromide or chloride anions: [Cxmim][X]. The peroxidase activity and stability were better for the shorter alkyl chain lengths of the ILs and peroxidase was more stable in the presence of the bromide anion, rather than chloride. The thermal inactivation profile was studied from 45 to 60 °C in [C4mim][Cl] and [C4mim][Br]. The activation energy was also determined. Kinetic analysis of the enzyme in the presence of the [C4mim][Br] or control (buffer solution) showed that the KM value increased 5-fold and Vm decreased 13-fold in the presence of the IL. The increase in KM indicates that this IL can reduce the binding affinity between substrate and enzyme.  相似文献   

17.
Phthalic anhydride (PA) modification stabilizes horseradish peroxidase (HRP) by reversal of the positive charge on two of HRP's six lysine residues. Native and PA-HRP had half-inactivation temperatures of 51 and 65 degrees C and half-lives at 65 degrees C of 4 and 17 min, respectively. PA-HRP was more resistant to dimethylformamide at room temperature and tetrahydrofuran at 60 degrees C and to unfolding by heat, guanidine chloride, EDTA, and the reducing agent tris(2-carboxyethyl)phosphine hydrochloride. Binding of the hydrophobic probe Nile Red to the native enzyme and to PA-HRP was similar. The kinetics of both HRPs with the substrates ABTS, ferrocyanide, ferulic acid, and indole-3-propionic acid were measured, as was binding of the inhibitor benzhydroxamic acid. Small improvements in the catalytic properties were detected.  相似文献   

18.
19.
In the presence of the anionic surfactant sodium n-dodecyl sulphate (SDS), horseradish peroxidase (HRP) undergoes a deactivation process. Suicide inactivation of horseradish peroxidase by hydrogen peroxide(3 mM) was monitored by the absorbance change in product formation in the catalytic reaction cycle. The progress curve of the catalytic reaction cycle was obtained at 27degrees C and phosphate buffer 2.5 mM (pH = 7.0). The corresponding kinetic parameters i.e., intact enzyme activity (alpha i); the apparent rate constant of suicide inactivation by peroxide (ki); and the apparent rate constants of enzyme deactivation by surfactant (kd) were evaluated from the obtained kinetic equations. The experimental data are accounted for by the equations used in this investigation. Addition of SDS to the reaction mixture intensified the inactivation process. The deactivation ability of denaturant could be resolved from the observed inactivation effect of the suicide substrate by applying the proposed model. The results indicate that the deactivation and the inactivation processes are independent of each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号