首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal primer PCR with DGGE for rapid detection of bacterial pathogens   总被引:5,自引:0,他引:5  
A universal primer PCR (UPPCR) combined with denaturing gradient gel electrophoresis (DGGE) was evaluated as a method permitting the rapid detection of pathogens. The results show that this method is efficient at amplifying the conserved regions of bacterial 16S rRNA genes with universal primers and can detect causative bacterial pathogens rapidly. Six species of bacteria from fisheries (Pseudomonas fluorescens, Vibrio anguillarum, Aeromonas hydrophila, Vibrio fluvialis, Providencia rettgeri and Aeromonas sobria) were examined. Our results indicate that the approach we undertook can be adopted not only for axenic bacterial populations but also for mixed communities as well. Furthermore, we were able to achieve the rapid detection of multiple bacteria a single in sample. In addition, UPPCR-DGGE was shown to be better than previously reported UPPCR-single-stranded conformation polymorphism (SSCP)-based methods for the rapid detection of bacterial pathogens.  相似文献   

2.
A simple and specific method for direct detection of bovine mastitis pathogens (Streptococcus agalactiae (GBS), Staphylococcus aureus and Escherichia coli) in milk products, bacterial samples from milk and isolated bacterial DNA was developed. The method is based on polymerase chain reaction (PCR) using sequence-specific primers only for GBS and species-specific primers derived from 16S and 23S rRNA for all chosen species. The presence of the gene of surface immunogenic protein (Sip) in bovine GBS isolates, described previously only in human GBS isolates was confirmed. The GBS detection was performed with the sequence coding for surface immunogenic protein from GBS human isolates designated as Sip specific sequence (SSS); this sequence was selected for specific primer design. The sequence is unique for GBS and was designed from a consensus of all known sip genes. The specific identification was shown on a collection of 75 GBS bovine isolates from different localities in Slovakia. All isolates were positive to SSS, 16S and 23S rRNA sequence. The 16S and 23S rRNA PCR detection was also performed with S. aureus and E. coli isolates and specific PCR products were also detected. The detection limit of this assay for milk products was 6 CFU/microL (i.e. 6000 CFU/mL) for GBS and E. coli, and 16 CFU/microL for S. aureus. This rapid, sensitive and specific diagnostic method can be performed within hours and represents an innovative diagnostic tool for the detection of milk pathogens in dairy products.  相似文献   

3.
The diagnosis of low grade prosthetic joint infection is difficult and time consuming. Nested-PCR for universal bacterial DNA segments detection of "orthopaedic" bacteria was tested in a laboratory setting. This method is based on amplification of the 16S bacterial ribosomal RNA coding sequences. 11 species of the most frequent bacterial pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus agalactiae, Enterococcus faecium, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Serratia marcescens) involved in prosthetic joint infections were studied. All could be detected rapidly and sensitively by this method.  相似文献   

4.
Enteroinvasive Escherichia coli (EIEC), heat-labile enterotoxin (LT) E. coli, Shigella spp., and Salmonella spp. are common enteric pathogens, which cause food-borne diseases if consumed in contaminated milk products. The rapid and reliable methods for detecting are imperative for reduction in hazard of infection. In this study, we selected primers, optimized the polymerase chain reaction (PCR) conditions, and analyzed the sensitivity and specificity of the multiplex PCR assay to screen raw milk from these enteric bacteria. Furthermore, EIEC, LT-E. coli, Shigella spp., Salmonella spp., and 11 non-targeted pathogenic strains were performed for the specificity of the multiplex PCR. Specific bands showed in EIEC, LT-E. coli, Shigella spp., and Salmonella spp. but no bands showed in other 11 pathogenic strains. The sensitivity of multiplex PCR was relatively high, was rounded to 200 CFU/ml (Shigella spp. and EIEC), 320 CFU/ml (Salmonella spp.), and 100 CFU/ml (LT-E. coli). This method for simultaneous and rapid detection of enteric pathogens (EIEC, LT-E. coli, Shigella spp., and Salmonella spp.) in raw milk showed high sensitivity and specificity, and led to faster track to report results.  相似文献   

5.
The use of buoyant density centrifugation (BDC) to prepare samples for PCR analysis of food pathogens is described. Blue cheese and milk homogenates were inoculated with Shigella flexneri and layered on top of Percoll® media. After BDC, the food homogenates remained in the upper part of the centrifuge tube, separated from the bacteria, which retained viability and were concentrated below the lighter Percoll® layer. PCR inhibitors stayed in the homogenate and PCR analyses of treated samples consistently detected 104 cfu g−1 of blue cheese and 500 cfu ml−1 of milk, respectively. Differences in the density of live and killed Sh. flexneri and Yersinia enterocolitica were detected by BDC but were dependent on the mechanism of killing.  相似文献   

6.
7.
Periodontitis is a multi-factorial chronic inflammatory and destructive disease of the tooth-supporting tissues. Quantitative anaerobic culture techniques have been used for microbial diagnosis of the different forms of the disease. The aim of this study was to compare real-time PCR with quantitative anaerobic culture for detection and quantification of 5 prominent periodontal pathogens. Real-time PCR assays with the 16s rRNA genes of Actinobacillus actinomycetemcomitans, Prevotella intermedia, Tannerella forsythensis, Peptostreptococcus micros and Fusobacterium spp. were developed. The PCR was validated on pure cultures of various bacterial strains. Subsequently, subgingival plaque samples from 259 adult patients with periodontitis were analyzed with quantitative anaerobic culture and real-time PCR. A standard curve for DNA quantification was created for each primer-probe set based on colony-forming units equivalents. All bacterial species were correctly identified. The lower limits of detection by PCR varied between 1-50 colony-forming units equivalents depending on the species. No cross-reactivities with heterologous DNA of other bacterial species were observed. Real-time PCR results showed a high degree of agreement with anaerobic culture results. Real-time PCR is a reliable alternative for diagnostic quantitative anaerobic culture of subgingival plaque samples.  相似文献   

8.
9.
10.
N Pripuzova  R Wang  S Tsai  B Li  GC Hung  RG Ptak  SC Lo 《PloS one》2012,7(8):e43246

Background

Real-time PCR array for rapid detection of multiple viral pathogens should be highly useful in cases where the sample volume and the time of testing are limited, i.e. in the eligibility testing of tissue and organ donors.

Findings

We developed a real-time PCR array capable of simultaneously detecting eight human viral pathogens: human immunodeficiency virus types 1 and 2 (HIV-1 and -2), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus-1 and -2 (HTLV-1 and -2), vaccinia virus (VACV) and West Nile virus (WNV). One hundred twenty (120) primers were designed using a combination of bioinformatics approaches, and, after experimental testing, 24 primer sets targeting eight viral pathogens were selected to set up the array with SYBR Green chemistry. The specificity and sensitivity of the virus-specific primer sets selected for the array were evaluated using analytical panels with known amounts of viruses spiked into human plasma. The array detected: 10 genome equivalents (geq)/ml of HIV-2 and HCV, 50 geq of HIV-1 (subtype B), HBV (genotype A) and WNV. It detected 100–1,000 geq/ml of plasma of HIV-1 subtypes (A – G), group N and CRF (AE and AG) isolates. Further evaluation with a panel consisting of 28 HIV-1 and HIV-2 clinical isolates revealed no cross-reactivity of HIV-1 or HIV-2 specific primers with another type of HIV. All 28 viral isolates were identified with specific primer sets targeting the most conserved genome areas. The PCR array correctly identified viral infections in a panel of 17 previously quantified clinical plasma samples positive for HIV-1, HCV or HBV at as low as several geq per PCR reaction.

Conclusions

The viral array described here demonstrated adequate performance in the testing of donors’ clinical samples. Further improvement in its sensitivity for the broad spectrum of HIV-1 subtypes is under development.  相似文献   

11.
Speed is a key area in our development of PCR assays for Bacillus anthracis. We believe that the strand specific detection of amplicons within 10 min is a realistic goal and that this will be achieved through fluorescent in-tube assays. We have used the Idaho LightCycler to study and develop candidate assays for B. anthracis. New strand specific fluorescent methods have been developed and a number of formats have been studied for speed and sensitivity. Internal controls have been developed as a method of improving our assay confidence. In this communication we will introduce the field of rapid PCR whilst discussing previous work in the areas described above, the development of our own rapid assay and a novel internal control system for B. anthracis. This work used PCR assays and hardware that are either commercially available, or have been previously described in open literature publications.  相似文献   

12.
The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities≥10(2) rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments.  相似文献   

13.

Background  

Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD.  相似文献   

14.
A multiplex PCR (mPCR) method was designed for the simultaneous detection of 4 major fish pathogens, Flavobacterium psychrophilum, Lactococcus garvieae, Pseudomonas aeruginosa, and P. putida. Each of the 4 pairs of oligonucleotide primers exclusively amplified the 16S rDNA gene of their targeted microorganism. The average detection limits for each organism amplified by mPCR were 2 colony-forming units (CFU) of F. psychrophilum, 3 CFU of L. garvieae, 3 CFU of P. aeruginosa, and 5 CFU of P. putida in mixed cultures. Multiplex PCR did not produce any nonspecific amplification products when tested against 28 related species of bacteria. High amounts of DNA from 1 bacterial species had a significant effect on the amplification sensitivity of the other bacterial species when these were present in lower concentrations in the multiplex reaction. The mPCR assay proved useful for the detection of the bacteria in naturally infected fish. The assay is a sensitive, specific, and reproducible diagnostic tool for the simultaneous detection of 4 pathogenic bacteria that cause disease in fish and offers a potentially useful alternative to the conventional culture-based method.  相似文献   

15.
A multiplex PCR-based method was designed for the simultaneous detection of the main pathogens involved in warm-water streptococcosis in fish (Streptococcus iniae, Streptococcus difficilis, Streptococcus parauberis, and Lactococcus garvieae). Each of the four pairs of oligonucleotide primers exclusively amplified the targeted gene of the specific microorganism. The sensitivity of the multiplex PCR using purified DNA was 25 pg for S. iniae, 12.5 pg for S. difficilis, 50 pg for S. parauberis, and 30 pg for L. garvieae. The multiplex PCR assay was useful for the specific detection of the four species of bacteria not only in pure culture but also in inoculated fish tissue homogenates and naturally infected fish. Therefore, this method could be a useful alternative to the culture-based method for the routine diagnosis of warm-water streptococcal infections in fish.  相似文献   

16.
Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far, Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteria species, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology.  相似文献   

17.
Quantitative analysis of anthrax spores from environmental samples is essential for accurate detection and risk assessment since Bacillus anthracis spores have been shown to be one of the most effective biological weapons. Using TaqMan real-time PCR, specific primers and probes were designed for the identification of pathogenic B. anthracis strains from pag gene and cap gene on two plasmids, pXO1 and pXO2, as well as a sap gene encoded on the S-layer. To select the appropriate lysis method of anthrax spore from environmental samples, several heat treatments and germination methods were evaluated with multiplex-PCR. Among them, heat treatment of samples suspended with sucrose plus non-ionic detergent was considered an effective spore disruption method because it detected up to 10(5) spores/g soil by multiplex-PCR. Serial dilutions of B. anthracis DNA and spore were detected up to a level of 0.1 ng/ microliters and 10 spores/ml, respectively, at the correlation coefficient of 0.99 by real-time PCR. Quantitative analysis of anthrax spore could be obtained from the comparison between C(T) value and serial dilutions of soil sample at the correlation coefficient of 0.99. Additionally, spores added to soil samples were detected up to 10(4) spores/g soil within 3 hr by real-time PCR. As a consequence, we established a rapid and accurate detection system for environmental anthrax spores using real-time PCR, avoiding time and labor-consuming preparation steps such as enrichment culturing and DNA preparation.  相似文献   

18.
Aims:  To develop a new rapid real-time polymerase chain reaction (PCR) based detection system for Vibrio parahaemolyticus ( V. parahaemolyticus ) applicable to raw oyster samples.
Methods and Results:  V. parahaemolyticus cells were artificially inoculated to oysters. Samples were homogenized in 100 ml of sterile saline water and serially diluted to 1·5 CFU ml−1 level. One millilitre of diluents was centrifuged and the pellet was resuspended with 100  μ l of de-ionized water. DNA was extracted by boiling for 20 min, and 0·5  μ l was used as a template for PCR reaction. Real-time PCR was performed with TMC-1000 system (1  μ l PCR system). The detection system was found to achieve detection limit of 1·5 CFU g−1 for V. parahaemolyticus . Furthermore, the specificities of these assay systems were confirmed with more than 20 bacterial strains, including various Vibrio species.
Conclusions:  Rapid and sensitive food-borne pathogen detection techniques for V. parahaemolyticus is important to the food industry and consumers. The direct detection of V. parahaemolyticus from food is possible with micro real-time PCR system.
Significance and Impact of the Study:  This study shows that oyster samples can be tested for V. parahaemolyticus with a rapid, specific and simple procedure.  相似文献   

19.
Diagnosis of leprosy is usually based on clinical features and skin smear results including the number of skin lesions. Mycobacterium leprae is not cultivable and bacterial enumeration by microscopic examination is required for leprosy classification, choice in choosing and monitoring chemotherapy regimens, and diagnosis of relapse. However, detection and quantification using standard microscopy yields results of limited specificity and sensitivity. We describe an extremely sensitive and specific assay for the detection and quantification of M. leprae in skin biopsy specimens. Primers that amplified a specific 171-bp fragment of M. leprae 16S rRNA gene were chosen and specificity was verified by amplicon melting temperature. The method is sensitive enough to detect as low as 20 fg of M. leprae DNA, equivalent to four bacilli. The assay showed 100% concordance with clinical diagnosis in cases of multibacillary patients, and 50% of paucibacillary leprosy. The entire procedure of DNA extraction and PCR could be performed in c. 3 h. According to normalized quantitative real-time PCR, the patients in this study had bacilli numbers in the range of 1.07 x 10(2) -1.65 x 10(8) per 6-mm3 skin biopsy specimen. This simple real-time PCR assay is a facile tool with possible applications for rapid detection and simultaneous quantification of leprosy bacilli in clinical samples.  相似文献   

20.
目的定期对医院血流感染分离菌的分布和抗菌药物敏感性进行分析,为菌血症的治疗提供可靠的药敏结果,提高治愈率。方法对大连市中心医院2010年1月至2013年12月8 277份血标本采用全自动血培养仪Bac T/Alert3D和Micro Scan Walk Away-40全自动细菌鉴定仪进行细菌培养、鉴定和抗生素敏感性试验。结果 8 277份血标本中检出病原菌940株,阳性率为11.4%。940株病原菌中革兰阳性菌441株,占46.9%;以金黄色葡萄球菌、凝固酶阴性葡萄球菌、屎肠球菌、粪肠球菌和肺炎链球菌为主;革兰阴性杆菌486株,占51.7%,以大肠埃希菌、肺炎克雷伯菌、阴沟肠杆菌、鲍曼不动杆菌和铜绿假单胞菌为主;真菌13株,占1.4%。大肠埃希菌、肺炎克雷伯菌对亚胺培南、美洛培南高度敏感;鲍曼不动杆菌对头孢哌酮/舒巴坦、米诺环素高度敏感;粪肠球菌、屎肠球菌、葡萄球菌对达托霉素、万古霉素、利奈唑胺、奎奴普丁/达福普汀高度敏感。结论血液培养意义重大,病原菌分布呈多样化趋势,且表现为多重耐药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号