首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ12-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20–42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.  相似文献   

2.
Microalgae are considered as a promising feedstock for biomass production. The selection of the most suitable species is based on several key parameters such as lipid and fatty acid productivity. In the present study, the growth of different microalgae strains was examined in freshwater media for photoautotrophs suited for large-scale applications to identify the most suitable medium for each species. In the optimal medium, Scenedesmus obliquus showed the highest biomass productivity measured as increase of cell dry weight (0.25 g cellu dry weight (CDW) L?1 day?1), while Botryococcus braunii showed the highest lipid and total fatty acid content (430 and 270 mg g?1 CDW, respectively) among the tested species. Regarding lipid and total fatty acid productivity, S. obliquus was the most lipid and total fatty acid productive strain with 41 and 18 mg L?1 day?1 during the exponential phase, respectively. Additionally, the proportion of saturated and monounsaturated fatty acids increased with duration of the incubation in S. obliquus, while polyunsaturated fatty acids decreased. These results nominate S. obliquus as a promising microalga in order to serve as a feedstock for renewable energy production.  相似文献   

3.
Decreasing Arctic sea ice cover and increasing stratification of ocean surface waters make the exposure of pelagic microalgae to high irradiances more likely. Apart from light being a necessary prerequisite for photosynthesis, rapidly changing and/or high irradiances are potentially detrimental. An in situ study was performed in the high Arctic (79°N) to determine the effect of high irradiances in general, and ultraviolet radiation (UVR, 280–400 nm) in particular, on cell concentrations, fatty acid composition, and photoprotective pigments of three diatom species isolated from seawater around Svalbard. Unialgal cultures were exposed in situ at 0.5- and 8 m-depth. After 40 h, cell concentrations of Synedropsis hyperborea and Thalassiosira sp., were lower at 0.5 than at 8 m, and the content of the photoprotective xanthophyll-cycle pigment diatoxanthin in all species (S. hyperborea, Thalassiosira sp., Porosira glacialis) was higher in the 0.5 m exposure compared to 8 m. In S. hyperborea, growth was additionally inhibited by UVR at 0.5-m depth. In situ radiation conditions led, furthermore, to a significant decrease in polyunsaturated fatty acids (PUFAs) in all three species, but UVR had no additional effect. Hence, we conclude that natural radiation conditions close to the surface could reduce growth and PUFA concentrations, but the effects are species specific. The diatoms’ potential to acclimate to these conditions over time has to be evaluated.  相似文献   

4.
In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3 % of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2 % of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.  相似文献   

5.
The effects of two sodium salts on growth, fatty acids, and essential oil compositions were investigated in a medicinal and aromatic plant, Ocimum basilicum cultivated in hydroponic medium. Plants were subjected to an equimolar concentration of Na2SO4 (25 mM) and NaCl (50 mM) for 15 days. Our results showed that leaf growth rate was more depressed by 25 mM Na2SO4 than by 50 mM NaCl. The total fatty acid contents did not show any change in plants. α-Linolenic, palmitic, and linoleic acids were the major fatty acids. The identification of basil leaf fatty acids has not been previously studied and this work revealed the predominance of polyunsaturated fatty acids. Under both salts, leaf fatty acid composition remained unchanged. Regarding the essential oil yield, it decreased significantly by 28 % under 25 mM Na2SO4 and showed an increase by 27 % under 50 mM NaCl. The major volatile compound in leaves was linalool with 34.3 % of total essential oil constituents, followed by eugenol (19.8 %), 1.8-cineole (14.4 %) and methyl eugenol (5.2 %). Further, levels of eugenol and methyl eugenol were most modulated by salt, and the negative correlation between these two compounds reflects the stimulation of O-methyltransferase activity under both salts.  相似文献   

6.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

7.
A recently isolated Australian Aurantiochytrium sp. strain TC 20 was investigated using small-scale (2 L) bioreactors for the potential of co-producing biodiesel and high-value omega-3 long-chain polyunsaturated fatty acids. Higher initial glucose concentration (100 g/L compared to 40 g/L) did not result in markedly different biomass (48 g/L) or fatty acid (12–14 g/L) yields by 69 h. This comparison suggests factors other than carbon source were limiting biomass production. The effect of both glucose and glycerol as carbon sources for Aurantiochytrium sp. strain TC 20 was evaluated in a fed-batch process. Both glucose and glycerol resulted in similar biomass yields (57 and 56 g/L, respectively) by 69 h. The agro-industrial waste from biodiesel production—glycerol—is a suitable carbon source for Aurantiochytrium sp. strain TC 20. Approximately half the fatty acids from Aurantiochytrium sp. strain TC 20 are suitable for development of sustainable, low emission sources of transportation fuels and bioproducts. To further improve biomass and oil production, fortification of the feed with additional nutrients (nitrogen sources, trace metals and vitamins) improved the biomass yield from 56 g/L (34 % total fatty acids) to 71 g/L (52 % total fatty acids, cell dry weight) at 69 h; these yields are to our knowledge around 70 % of the biomass yields achieved, however, in less than half of the time by other researchers using glycerol and markedly greater than achieved using other industrial wastes. The fast growth and suitable fatty acid profile of this newly isolated Aurantiochytrium sp. strain TC 20 highlights the potential of co-producing the drop-in biodiesel and high value omega-3 oils.  相似文献   

8.
9.
Two freshwater microalgae including Chlamydomonas mexicana and Scenedesmus obliquus were grown on Bold Basal Medium (BBM) with different levels of salinity up to 100 mM NaCl. The dry biomass and lipid content of microalgae were improved as the concentration of NaCl increased from 0 to 25 mM. Highest dry weight (0.8 and 0.65 g/L) and lipid content (37 and 34 %) of C. mexicana and S. obliquus, respectively, were obtained in BBM amended with 25 mM NaCl. The fatty acid composition of the investigated species was also improved by the increased NaCl concentration. At 50 mM, NaCl palmitic acid (35 %) and linoleic acid (41 %) were the dominant fatty acids in C. mexicana, while oleic acid (41 %) and α-linolenic acid (20 %) were the major fractions found in S. obliquus.  相似文献   

10.
Thraustochytrids are ubiquitous marine osmo-heterotrophic fungi-like microorganisms with only about 40 identified species till now. In this study, a total of 60 thraustochytrid strains were isolated from marine coastal habitats. Analysis of 18S rRNA gene sequences revealed that they belonged to three genera, i.e., Schizochytrium, Aurantiochytrium, and Thraustochytrium. All of the isolates were found to show considerable cellulolytic and lipolytic activities. Strains of Aurantiochytrium sp. and Thraustochytrium sp. were found to produce the highest levels of extracellular polysaccharides (EPS), which reached 345 μg ml?1 in the growth media. Fourier transform infrared (FTIR) spectra of the EPS samples derived from two thraustochytrids (PKU#Sed1 and #SW1) displayed peaks for carbohydrates, proteins, lipids, uronic acids, and nucleic acids. Fatty acid profiles of four thraustochytrids comprised of palmitic acid (C16:0) and docosahexaenoic acid (DHA) as their major constituents. Schizochytrium sp. demonstrated the highest DHA production at 44 % of total fatty acids (TFA) with biomass and DHA yield of 7.1 and 1.6 g l?1, respectively, on the fourth day of growth. All the four isolates exhibited considerable production of palmitic acid (16:0) in their fatty acid profiles ranging from 35 to 50 % TFA. This is the first report on extracellular enzymes, EPS, and DHA production from thraustochytrids isolated from the coastal habitats of China.  相似文献   

11.
Fatty acyl–acyl carrier protein (ACP) thioesterase (acyl-ACP TE) from Streptococcus pyogenes (strain MGAS10270) was codon-optimized and expressed in Escherichia coli K-12 W3110 and Escherichia coli K-12 MG1655. By employing codon-optimized S. pyogenes acyl-ACP TE to improve the total free fatty acids (FFAs) and to tailor the composition of FFAs, high-specificity production of saturated fatty acids (C12, C14) and unsaturated fatty acids (C18:1 C18:2) was achieved in recombinants. E. coli SGJS41 and SGJS46 (codon-optimized acyl-ACP TE of S. pyogenes) demonstrated the highest intracellular total FFA content (339 mg/l vs 342 mg/l); in particular, the content of C12 and C14 FFAs was about 3–5 fold, and the content of C18:1 and C18:2 FFAs was about 8–42 fold higher than that in the control E. coli and E. coli JES1017 (original acyl-ACP TE of S. pyogenes).  相似文献   

12.
The aim of this study was to analyze the cell envelope components and surface properties of two phenotypes of Lactobacillus rhamnosus isolated from the human gastrointestinal tract. The ability of the bacteria to adhere to human intestinal cells and to aggregate with other bacteria was determined. L. rhamnosus strains E/N and PEN differed with regard to the presence of exopolysaccharides (EPS) and specific surface proteins. Transmission electron microscopy showed differences in the structure of the outer cell surface of the strains tested. Bacterial surface properties were analyzed by Fourier transform infrared spectroscopy, fatty acid methyl esters and hydrophobicity assays. Aggregation capacity and adhesion of the tested strains to the human colon adenocarcinoma cell line HT29 was determined. The results indicated a high adhesion and aggregation ability of L. rhamnosus PEN, which possessed specific surface proteins, had a unique fatty acid content, and did not synthesize EPS. Adherence of L. rhamnosus was dependent on specific interactions and was promoted by surface proteins (42–114 kDa) and specific fatty acids. Polysaccharides likely hindered bacterial adhesion and aggregation by masking protein receptors. This study provides information on the cell envelope constituents of lactobacilli that influence bacterial aggregation and adhesion to intestinal cells. This knowledge will help to understand better their specific contribution in commensal–host interactions and adaptation to this ecological niche.  相似文献   

13.

Key message

Potato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses.

Abstract

Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum. Oxylipin activation was evaluated by the measurement of LOX activity and metabolite quantification. The basal levels of oxylipins and fatty acids showed that potato cells contained higher amounts of linoleic (LA), linolenic (LnA) and stearic acids than tobacco cells. The major oxylipin in potato cells, 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid (9,10,11-THOD), was not detected in tobacco cells. CCF induced a sharp increase of LA and LnA at 8 h in tobacco cells. In contrast they decreased in potato cells. In CCF-treated tobacco cells, colneleic acid increased up to 24 h, colnelenic acid and 9(S)-hydroxyoctadecatrienoic acid (9(S)-HOT) increased up to 16 h. In potato cells, only colneleic acid increased slightly until 16 h. A differential induction of LOX activity was measured in both cells treated by CCF. With LPS treatment, only 9,10,11-THOD accumulation was significantly induced at 16 h in potato cells. Fatty acids were constant in tobacco but decreased in potato cells over the studied time period. These results showed that the two elicitors were differently perceived by the two Solanaceae and that oxylipin pathway is strongly induced in tobacco with the CCF. They also revealed that elicitor-induced responses depended on both cell culture and elicitor.  相似文献   

14.
In this study, the yeast strain P5 isolated from a mangrove system was identified to be a strain of Aureobasidium pullulans var. melanogenum and was found to be able to secrete a large amount of heavy oil into medium. After optimization of the medium for heavy oil production and cell growth by the yeast strain P5, it was found that 120.0 g/l of glucose and 0.1 % corn steep liquor were the most suitable for heavy oil production. During 10-l fermentation, the yeast strain P5 produced 32.5 g/l of heavy oil and cell mass was 23.0 g/l within 168 h. The secreted heavy oils contained 66.15 % of the long-chain n-alkanes and 26.4 % of the fatty acids, whereas the compositions of the fatty acids in the yeast cells were only C16:0 (21.2 %), C16:1(2.8 %), C18:0 (2.9 %), C18:1 (39.8 %), and C18:2 (33.3 %). We think that the secreted heavy oils may be used as a new source of petroleum in marine environments. This is the first report of yeast cells which can secrete the long-chain n-alkanes.  相似文献   

15.
Random amplified polymorphic DNA (RAPD) and fatty acid (FAME) profiles were used to examine phenotypic and genetic relationships among 16 Centaurea species growing wild in the eastern Anatolia region of Turkey. Thirteen decamer primers were used to examine polymorphism. According to the RAPD results, 99 amplicons in the size range of 50–1000 bp were produced from 13 primers in 16 Centaurea species. Genetically four distinct groups were determined among the species of Centaurea, which represents high genetic variation. In the 16 species, 14 fatty acids were determined according to FAME results. Both FAME and RAPD results showed that C. virgata is genetically different from other species. The differences in the composition of fatty acids among Centaurea species suggest that fatty acid profiles could be used to differentiate among some of these species. Results of this study show that RAPD and FAME analyses are consistent.  相似文献   

16.
Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Ålesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 × 103–1.3 × 104 cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Ålesund also was very similar (0.6 × 104 and 3.4 × 104, respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4–37°C), in their tolerance to NaCl (0.3–2 M NaCl) and growth pH range (2–11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20°C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5°C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.  相似文献   

17.
Organic and water extracts of Isochrysis galbana T-ISO (=Tisochrysis lutea), Tetraselmis sp. and Scenedesmus sp. were evaluated for their antioxidant activity, acetylcholinesterase (AChE) inhibition, cytotoxicity against tumour cell lines, and fatty acids and total phenolic content (TPC). I. galbana T-ISO had the highest TPC (3.18 mg GAE g?1) and radical scavenging activity, with an IC50 value of 1.9 mg mL?1 on the acetone extract. The extracts exhibited a higher ability to chelate Fe2+ than Cu2+, and the maximum Fe2+ chelating capacity was observed in the hexane extract of Scenedesmus sp. (IC50=0.73 mg mL?1) and Scenedesmus sp. (IC50?=?0.73 mg mL?1). The highest ability to inhibit AChE was observed in the water and ether extracts of Scenedesmus sp., with IC50 values of 0.11 and 0.15 mg mL?1, respectively, and in the water extract of I. galbana (IC50?=?0.16 mg mL?1). The acetone extract of I. galbana T-ISO significantly reduced the viability of human hepatic carcinoma HepG2 cells (IC50?=?81.3 μg mL?1) as compared to the non-tumour murine stromal S17 cell line, and displayed a selectivity index of 3.1 at the highest concentration tested (125 μg mL?1). All species presented a highly unsaturated fatty acids profile. Results suggest that these microalgae, particularly I. galbana T-ISO, could be a source of biomolecules for the pharmaceutical industry and the production of functional food ingredients and can be considered as an advantageous alternative to several currently produced microalgae.  相似文献   

18.
Photosynthetic biofilms proliferating on heritage monuments represent a major threat for curators leading to biodegradation and esthetic issues. Previous studies demonstrated that UV-C, used as a tool for biofilm eradication, is a promising avenue to combat microbial proliferation. In this study, this environmentally friendly method was tested on biofilm-forming Chlorella vulgaris suspension. Algal physiological response to UV-C was then assessed. Results showed that >?10 kJ m?2 UV-C exposure was enough to directly kill cells whereas low UV-C exposure reduced quantum yield of photosystem II and inhibited both respiration and photosynthesis. Clear relationships between UV-C exposure times and physiological responses were found. In addition, the use of VIS-light after UV-C treatment enhances chlorophyll bleaching. Our findings contribute to a better understanding of the physiological responses of Chlorella vulgaris to UV-C radiation allowing thus an optimization of the UV-C treatment reported in our previous studies.  相似文献   

19.
Hundung Limestone habitat, Manipur, India is an unexplored site for microbial diversity studies. Using polyphasic taxonomy, a Streptomyces strain, MBRL 172T, has been characterized. The strain was found to show highest 16S rRNA gene sequence similarity with Streptomyces coeruleofuscus NBRC 12757T (99.2 %). The DNA relatedness between MBRL 172T and S. coeruleofuscus NBRC 12757T, and between MBRL 172T and Streptomyces nogalater NBRC 13445T, were 36.8 ± 4.4 and 52.5 ± 2.7 %, respectively. Strain MBRL 172T was found to contain ll-diaminopimelic acid as the diagnostic diamino acid and glucose, mannose and xylose as the major sugars in whole cell hydrolysates. The polar lipids in the cell membrane were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannoside. The predominant menaquinones detected were MK-9(H6) and MK-9(H8). The cellular fatty acids identified were mainly saturated fatty acids: anteiso-C15:0, iso-C16:0 and iso-C15:0. Based on differences in the biochemical and molecular characteristics from its closest relatives, the strain can be proposed to represent a novel taxon in the genus Streptomyces, for which the name Streptomyces canchipurensis is proposed, with the type strain MBRL 172T (=JCM 17575T = KCTC 29105T).  相似文献   

20.
The need to develop biomass-based domestic production of high-energy liquid fuels (biodiesel) for transportation can potentially be addressed by exploring microalgae with high lipid content. Selecting the strains with adequate oil yield and quality is of fundamental importance for a cost-efficient biofuel feedstock production based on microalgae. This work evaluated 29 strains of Chlorella isolated from Malaysia as feedstock for biodiesel based on volumetric lipid productivity and fatty acid profiles. Phylogenetic studies based on 18S rRNA gene revealed that majority of the strains belong to true Chlorella followed by Parachlorella. The strains were similarly separated into two groups based on fatty acid composition. Of the 18 true Chlorella strains, Chlorella UMACC187 had the highest palmitic acid (C16:0) content (71.3?±?4.2 % total fatty acids, TFA) followed by UMACC84 (70.1?±?0.7 %TFA), UMACC283 (63.8?±?0.7 %TFA), and UMACC001 (60.3?±?4.0 %TFA). Lipid productivity of the strains at exponential phase ranged from 34.53 to 230.38 mg L?1 day?1, with Chlorella UMACC050 attaining the highest lipid productivity. This study demonstrated that Chlorella UMACC050 is a promising candidate for biodiesel feedstock production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号