首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the applicability of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for gene expression in an extremely halophilic organism: Halobacterium salinarum. Two recombinant GFPs were fused with bacteriorhodopsin, a typical membrane protein of H. salinarum. These fusion proteins preserved the intrinsic functions of each component, bacteriorhodopsin and GFP, were expressed in H. salinarum under conditions with an extremely high salt concentration, and were proved to be properly localized in its plasma membrane. These results suggest that GFP could be used as a versatile reporter of gene expression in H. salinarum for investigations of various halophilic membrane proteins, such as sensory rhodopsin or phoborhodopsin.  相似文献   

2.
Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.  相似文献   

3.
《Biophysical journal》2022,121(16):3136-3145
Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.  相似文献   

4.
5.
Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting l-methionine, l-norleucine and l-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.  相似文献   

6.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

7.
8.
A new species of halophilic photosynthetic bacteria, Rhodospirillum salinarum, has been isolated and described. Its natural habitat are the terminal crystallization ponds of solar salt production plants. R. salinarum grows optimally at 42°C in the presence of 6–18% NaCl (w/v). Growth requirements are complex, yeast extract and peptone being required both for aerobic heterotrophic and for anaerobic phototrophic growth. Increasing concentrations of NaCl in the growth media did not give rise to any corresponding increase in intracellular concentrations of K+, Na+, polyalcohols or amino acids. Malate dehydrogenase from R. salinarum is not halophilic, being inhibited even at low concentrations of Na+ or K+. The GC mol % of DNA from R. salinarum is markedly higher than that for DNA from R. salexigens, the only previously described halophilic species of the genus Rhodospirillum.  相似文献   

9.
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein''s fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.  相似文献   

10.
The influence of pH and the salt concentration on the proton and sodium ion permeability of liposomes formed from lipids of the halophile Halobacterium salinarum and the haloalkaliphile Halorubrum vacuolatum were studied. In contrast with liposomes formed from Escherichia coli lipids, liposomes formed from halophilic lipids remained stable up to 4 M of NaCl and KCl. The proton permeability of the liposomes from lipids of halophiles was independent of the salt concentration and was essentially constant between pH 7 and pH 9. The sodium ion permeability increased with the salt concentration but was 10- to 100 fold lower than the proton permeability. It is concluded that the membranes of halophiles are stable over a wide range of salt concentrations and at elevated pH values and are well adapted to the halophilic conditions. Received: February 25, 1999 / Accepted: June 11, 1999  相似文献   

11.
In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.  相似文献   

12.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.  相似文献   

13.
Enzymes produced by halophilic archaea are generally heat resistant and organic solvent tolerant, and accordingly important for biocatalytic applications in ‘green chemistry’, frequently requiring a low-water environment. NAD+-dependent glutamate dehydrogenase from an extremely halophilic archaeon Halobacterium salinarum strain NRC-36014 was selected to explore the biotechnological potential of this enzyme and genetically engineered derivatives. Over-expression in a halophilic host Haloferax volcanii provided a soluble, active recombinant enzyme, not achievable in mesophilic Escherichia coli, and an efficient purification procedure was developed. pH and salt dependence, thermostability, organic solvent stability and kinetic parameters were explored. The enzyme is active up to 90 °C and fully stable up to 70 °C. It shows good tolerance of various miscible organic solvents. High concentrations of salt may be substituted with 30 % DMSO or betaine with good stability and activity. The robustness of this enzyme under a wide range of conditions offers a promising scaffold for protein engineering.  相似文献   

14.
Glycocardiolipin is an archaeal analogue of mitochondrial cardiolipin, having an extraordinary affinity for bacteriorhodopsin, the photoactivated proton pump in the purple membrane of Halobacterium salinarum. Here purple membranes have been isolated by osmotic shock from either cells or envelopes of Hbt. salinarum. We show that purple membranes isolated from envelopes have a lower content of glycocardiolipin than standard purple membranes isolated from cells. The properties of bacteriorhodopsin in the two different purple membrane preparations are compared; although some differences in the absorption spectrum and the kinetic of the dark adaptation process are present, the reduction of native membrane glycocardiolipin content does not significantly affect the photocycle (M-intermediate rise and decay) as well as proton pumping of bacteriorhodopsin. However, interaction of the pumped proton with the membrane surface and its equilibration with the aqueous bulk phase are altered.  相似文献   

15.
The proteoliposomes prepared from purified proline carrier protein isolated from membrane vesicles of Mycobacterium phlei exhibited an uptake of proline, which was dependent upon a proton gradient generated across the lipid bilayer. Although a proton gradient was generated by the reduction of the entrapped ferricyanide by ascorbate oxidation with benzoquinone serving as a lipid soluble hydrogen carrier, transport of proline was dependent on the addition of sodium ion. The movement of sodium and proline across the artificial membrane resulted in a simultaneous collapse of the proton gradient.  相似文献   

16.
Analysis of the far-ultraviolet solution and the oriented-film circular dichroic (CD) spectra of the purple membrane (PM) has indicated that the α-helical segments of its sole protein bacteriorhodopsin (bR) can undergo a significant tilting from the normal to the membrane plane during light-dependent hydroxylamine-mediated bleaching of the bR. However, this drastic change in tertiary structure is free of any observable secondary structural changes. This phenomenon can provide an excellent means for studying the relative contributions of forces responsible for the stability of this transmembrane protein within the membrane bilayer. Perturbation of the PM by varying degrees of papain digestion (resulting in changes in the bR ranging from only an elimination of the long COOH-terminal tail to the additional eliminations of the short NH2-terminal tail and a number of linkage amino acids between the helical segments of the bR) and by chemical cross-linking with dimethyl adipimidate (resulting primarily in the formation of intramolecular cross-links) resulted in a significant increase in this bleaching-induced tilting in all cases except the one in which only the COOH-tail was eliminated. The most severe perturbation (2-wk papain digestion) increased the net tilt angle per segment from 24 to 39° with no indication of any secondary structural changes. Although these perturbations drastically reduced the structural stability of the bR to bleaching, they caused virtually no observable changes in the intramolecular structure of the bR or the supramolecular structure of the PM based on analysis of extensive absorption, linear dichroic, and CD spectra. In addition, study of the bleaching rates for the perturbed PM samples indicated that a linear correlation exists between the calculated initial bleaching rates and the net tilt angles.

Considering the forces generally assumed to account for the stability of transmembrane proteins in membranes, (a) intersegmental hydrogen bonding and electrostatic interactions, (b) electrostatic interactions between hydrophilic polypeptide segments extending outside the bilayer and the many charged lipid heads of the bilayer, and (c) hydrophobic interactions, it is clear that the results of the bleaching experiments eliminate all but perhaps the last as contributing significantly to the bR stability in the PM. Furthermore, they provide more compelling evidence than previously available that the bR is capable of undergoing relatively large retinyldiene-controlled tertiary structural changes and that the chromophoric retinal serves as the most important factor in the native bR structural stability. This dynamic view of the bR bears directly on models proposed for bR function, favoring those in which protein structural metastability, rather than rigidity, is an essential factor. The proteinquake or deformation wave model proposed by this laboratory falls into this category.

  相似文献   

17.
Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli’s specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.  相似文献   

18.
Subunit Structure of Gas Vesicles: A MALDI-TOF Mass Spectrometry Study   总被引:2,自引:0,他引:2  
Many aquatic microorganisms use gas vesicles to regulate their depth in the water column. The molecular basis for the novel physical properties of these floatation organelles remains mysterious due to the inapplicability of either solution or single crystal structural methods. In the present study, some folding constraints for the ~7-kDa GvpA building blocks of the vesicles are established via matrix-assisted laser desorption ionization time-of-flight mass spectrometry studies of intact and proteolyzed vesicles from the cyanobacterium Anabaena flos-aquae and the archaea Halobacterium salinarum. The spectra of undigested vesicles show no evidence of posttranslational modification of the GvpA. The extent of carboxypeptidase digestion shows that the alanine rich C-terminal pentapeptide of GvpA is exposed to the surface in both organisms. The bonds that are cleaved by Trypsin and GluC are exclusively in the extended N-terminus of the Anabaena flos-aquae protein and in the extended C-terminus of the Halobacterium salinarum protein. All the potentially cleavable peptide bonds in the central, highly conserved portion of the protein appear to be shielded from protease attack in spite of the fact that some of the corresponding side chains are almost certainly exposed to the aqueous medium.  相似文献   

19.
20.

Background

The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans.

Methodology/Principal Findings

We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate.

Conclusions/Significance

We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号