首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production.  相似文献   

2.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

3.
Piriformospora indica is a wide-host root-colonizing endophytic fungus which allows the plants to grow under extreme physical and nutrient stress. The fungus can be cultivated on complex and minimal substrates. It belongs to the Sebacinales in Basidiomycota. P. indica has a vast geographical distribution and is reported from Asia, South America and Australia. The fungus is interesting for basic research as well as biotechnological applications because: (i) it functions as a plant promoter and biofertilizer in nutrient-deficient soils, (ii) as a bioprotector against biotic and abiotic stresses including root and leaf fungus pathogens and insect invaders, (iii) as a bioregulator for plant growth development, early flowering, enhanced seed production, and stimulation of active ingredients in medicinal plants (iv) as well as a bio-agent for the hardening of tissue-culture-raised plants. Positive interaction are established for many plants of economic importance in arboriculture, agro-forestry, flori-horticulture including Orchids, and those utilized for energy production and paper industry. P. indica also interacts with members of bryophyte, Aneura pinguis, pteridophyte, Pteris ensiormis, Gymnosperms (Pinus halepensis) and a large number of angiosperms (145 tested till date) including the model plant Arabidopsis thaliana and other members of the mustard family. Similar to arbuscular mycorrhizal fungi, P. indica stimulates nutrient uptake in the roots and solubilizes insoluble phosphatic and sulphur components in the soil. The interaction of P. indica with the model plants Arabidopsis thaliana and barley (Hordeum vulgare L.) is used to understand the molecular basis of this beneficial plant/microbe interaction. We describe the current knowledge about the molecular basis of the interaction of plants with P. indica. An attempt is made to compare it with pathogenic and mycorrhizal plant/microbe interactions and also propose possible biotechnological applications.  相似文献   

4.
Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.  相似文献   

5.
Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.Key words: Piriformospora indica, phosphate transport, plant growth promotionPhosphorous (P) is one of the most essential mineral nutrients for plant growth and development. In the soil P is present mainly in the form of sparingly soluble complexes that are not directly accessible to plants. Thus, it is the nutrient that limits crop production throughout the world.1 Plants have therefore evolved a range of strategies to increase the availability of soil P, which include both morphological and biochemical changes at the soil-root interface. For example, increased root growth and branching, proliferation of root hairs, and release of root exudates can increase plant access to inorganic phosphate (Pi) from otherwise poorly available sources.2,3 Plant root possess two distinct modes of phosphate uptake, direct uptake by its own transporters and indirect uptake through mycorrhizal associations. In plants several high affinity P transporters specifically associated with the uptake of Pi from soil solution. Expression of these transporters is induced in response to P deficiency and enables Pi to be effectively taken up against the large concentration gradient that occurs between the soil solution and internal plant tissues.4 However, in arbuscular mycorrhizal associations (indirect uptake), plants acquire Pi from the extensive network of fine extra radical hyphae of fungus, that extend beyond root depletion zones to mine new regions of the soil.5 In the case of arbuscular mycorrhizal fungi (AMF), including Glomus versiforme and G. intraradices, the regulation of phosphate transporters that are expressed, typically upregulated under P deficiency but their role in P transfer to the host plant have not been characterized.5,6P. indica was reported to be involved in high salt tolerance, disease resistance and strong growth-promoting activities leading to enhancement of host plant yield.79 Recently, we have shown the role of PiPT in the P transport to the host plant.10 Here we discuss the performance of P. indica (grown under P-rich and -deprived conditions and colonized with the host plant) and its involvement in the P transportation to, and the growth of the host plant.  相似文献   

6.
The mutualistic interaction between the endophytic and root-colonizing fungus Piriformospora indica and Arabidopsis thaliana is a nice model system to study beneficial and non-benefical traits in a symbiosis. Colonized Arabidopsis plants are taller, produce more seeds and are more resistant against biotic and abiotic stress. Based on genetic, molecular and cellular analyses, Arabidopsis mutants were identified which are impaired in their beneficial response to the fungus. Several mutants are smaller rather than bigger in the presence of the fungus and are defective in defense responses. This includes mutants with defects in defense-signaling components, defense proteins and enzymes, and defense metabolites. The mutants cannot control root colonization and are often over-colonized by P. indica. As a consequence, the benefits for the plants are lost and they try to restrict root colonization by activating unspecific defense responses against P. indica. These observations raise the question as to how the plants balance defense gene activation or development and what signaling molecules are involved. P. indica promotes the synthesis of phosphatidic acid (PA), which binds to the 3-PHOSPHOINOSITIDE-DEPENDENT-KINASE1 (PDK1). This activates a kinase pathway which might be crucial for balancing defense and growth responses. The review describes plant defense compounds which are necessary for the mutualistic interaction between the two symbionts. Furthermore, it is proposed that the PA/PDK1 pathway may be crucial for balancing defense responses and growth stimulation during the interaction with P. indica.  相似文献   

7.
Comparison of morphogenetic potential of three important Indian species of Garcinia??G. indica, G. cambogia and G. xanthochymus has been reported. Apomictic seeds of G. indica were found to be morphogenetically most potential followed by G. cambogia. The explants of G. xanthochymus were highly recalcitrant towards in vitro conditions and failed to induce adventitious buds on any of the media tested. High frequency direct shoot bud differentiation was induced in aseptic seed cultures of G. indica and G. cambogia on MS medium supplemented with cytokinins (BAP, kinetin or TDZ). Amongst the three cytokinins tested, TDZ (0.1?C0.5???M) was most effective for adventitious bud differentiation in both G. indica and G. cambogia, however, the proliferating buds failed to elongate. Substantial number of buds induced on BAP supplemented media elongated into shoots after subculture on elongation medium. Addition of NAA along with cytokinins in the induction medium enhanced callusing without improvement in bud induction response. The induced adventitious buds were elongated on MS basal medium containing 0.2% activated charcoal. Direct rooting was achieved in both G. indica and G. cambogia on auxin supplemented media with best response at 10???M IBA concentration in both the species. The in vitro raised plantlets showed 90% survival in the field when transferred after hardening and acclimatization.  相似文献   

8.
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.  相似文献   

9.
《Plant science》1987,49(1):57-62
Growth of explants or calli of two rose cultivars ‘Sonia’ and ‘Golden Times’, was extensively promoted when they were grown on agar together with calli of rose rootstocks Rosa indica or Rosa canina, while growth of callus of a miniature rose cultivar was either not affected or inhibited. The growth of R. indica callus was inhibited when accompanied by explants of ‘Sonia’ or ‘Golden Times’. Promotion or inhibition of explants or callus growth was also observed when the agar medium was supplemented with conditioned liquid medium from cell suspension cultures of cv. Sonia or R. indica. Autoclaved conditioned medium from R. indica lost its promoting effect, while that from Sonia lost its inhibiting effect after autoclaving. The possible interaction between the rootstock and scion tissues is discussed.  相似文献   

10.
The root endophytic fungus Piriformospora indica is a prime candidate to improve the growth and yield of plants. It also acts as a growth promoter and bioprotector, as well as combating environmental stress in a range of plant species. In the present investigation impact of a P. indica culture filtrate was studied on Helianthus annus Sun gold and H. annus Japanese gold varieties in the greenhouse. Treatment with the P. indica culture filtrate promoted overall growth and seed production of the plants. Moreover, the oil content of the seeds increased by 50% to 70% in these two varieties of H. annus plants. The possible reasons for these effects are discussed.  相似文献   

11.
12.
Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that PiPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by PiPT was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of PiPT (Km 25 μm) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of PiPT was localized to the external hyphae of P. indica colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of PiPT, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type P. indica. Higher amounts of phosphate were found in plants colonized with wild-type P. indica than that of non-colonized and plants colonized with knockdown PiPT P. indica. These observations suggest that PiPT is actively involved in the phosphate transportation and, in turn, P. indica helps improve the nutritional status of the host plant.  相似文献   

13.
Iron (Fe) is a micronutrient required for plant growth and development; however, most Fe forms in soil are not readily available to plants, resulting in low Fe contents in plants and, thereby, causing Fe deficiency in humans. Biofortification through plant-fungal co-cultivation might be a sustainable approach to increase crop Fe contents. Therefore, we aimed to examine the role of a Piriformospora indica Fe transporter on rice Fe uptake under low Fe conditions. A high-affinity Fe transporter (PiFTR) from P. indica was identified and functionally characterized. PiFTR fulfilled all criteria expected of a functional Fe transporter under Fe-limited conditions. Additionally, PiFTR expression was induced when P. indica was grown under low Fe conditions, and PiFTR complemented a yeast mutant lacking Fe transport. A knockdown (KD) P. indica strain was created via RNA interference to understand the physiological role of PiFTR. We observed that the KD-PiFTR-P. indica strain transported a significantly lower amount of Fe to colonized rice (Oryza sativa) than the wild type (WT) P. indica. WT P. indica-colonized rice plants were healthier and performed significantly better than KD-PiFTR-P. indica-colonized rice plants. Our study offers potential avenues for an agronomically sound amelioration of plant growth in low Fe environments.  相似文献   

14.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

15.
Simple, reproducible, high frequency, improved plant regeneration protocol in Eastern Cottonwood (Populus deltoides) clones, WIMCO199 and L34, has been reported. Initially, aseptic cultures established from axillary buds of nodal segments from mature plus trees on MS liquid medium supplemented with 0.25 mg l−1 KIN and 0.25 mg l−1 IAA. Nodal and internodal segments were found to be extra-prolific over shoot apices during course of aseptic culture establishment, while 0.25 mg l−1 KIN concentration played a stimulatory role in high frequency plant regeneration. Diverse explants, such as various leaf segments, internodes, and roots from in vitro raised cultures, were employed. Direct plant regeneration was at high frequency of 92% in internodes, 88% in leaf segments, and 43% in root segments. This led to the formation of multiple shoot clusters on established culture media with rapid proliferation rates. Many-fold enhanced shoot elongation and growth of the clusters could be achieved on liquid MS medium supplemented with borosilicate glass beads, which offer physical support for proliferating shoots leading to faster growth in comparison to semi-solid agar or direct liquid medium. SEM examination of initial cultures confirmed direct plant regeneration events without intervening calli. In vitro regenerated plants induced roots on half-strength MS medium with 0.15 mg l−1 IAA. Rooted 5- to 6-week-old in vitro regenerated plants were transferred into a transgenic greenhouse in pots containing 1:1 mixture of vermicompost and soil at 27 ± 2°C for hardening and acclimatization. 14- to 15-week-old well-established hardened plants were transplanted to the field and grown to maturity. The mature in vitro raised poplar trees exhibited a high survival rate of 85%; 4-year-old healthy trees attained an average height of 8 m and an average trunk diameter of 25 cm and have performed well under field conditions. The regeneration protocol presented here will be very useful for undertaking genetic manipulation, providing a value addition to Eastern Cottonwood propagation in future.  相似文献   

16.
Root Knot Nematode (RKN, Meloidogyne incognita) is one of the greatest damaging soil pathogens causes severe yield losses in cucumber and many other economic crops. Here, we evaluated the potential antagonistic effect of the root mutualistic fungus Piriformospora indica against RKN and their impact on vegetative growth, yield, photosynthesis, endogenous salicylic acid (SA) and its responsive genes. Our results showed that P. indica dramatically decreased the damage on shoot and root architecture of cucumber plants, which consequently enhanced yield of infested plants. Likewise, P. indica colonization clearly improved the chlorophyll content and delimited the negative impact of RNK on photosynthesis. Moreover, P. indica colonization exhibited a significant reduction of different vital nematological parameters such as soil larva density, amount of eggs/eggmass, eggmasses, females and amount of galls at cucumber roots. Additionally, the results showed that SA level was significantly increased generally in the roots of all treatments especially in plants infested with RKN alone as compared to control. This suggests that P. indica promoting SA levels in host cucumber plant roots to antagonize the RKN and alleviate severity damages occurred in its roots. This higher levels of SA in cucumber roots was consistent with the higher expressional levels of SA pathway genes PR1 and PR3. Furthermore, P. indica colonization reduces PR1, PR3 and increased NPR1 in roots of RKN infested cucumber plants when compared to non-colonized plants. Interestingly, our in vitro results showed that direct application of P. indica suspension against the J2s exhibited a significant increase in mortality ratio. Our results collectively suggest that P. indica promoting morphological, physiological and SA levels that might together play a major important role to alleviate the adverse impact of RKN in cucumber.  相似文献   

17.
18.
19.
Ceratotheca triloba (Bernh.) Hook.f. commonly known as an African foxglove is an indigenous plant which occurs in most parts of South Africa. The species is commonly consumed as a leafy vegetable and utilized for its medicinal properties. Although the high nutritional value of the species and medicinal properties are well documented, information related to critical aspect of cultivation is currently limited. Therefore, this study aimed to evaluate the effect of vermicompost leachate (VCL) on growth, nutritional, phytochemical, and antioxidant levels in C. triloba at different growth stages under nutrient-deficient conditions. After in vitro germination, seedlings were grown in the greenhouse for 2 and 4 months under nitrogen (–N); phosphorus (–P); and potassium (–K) deficiency conditions, and were treated with VCL. Vermicompost leachate did not improve the growth of C. triloba plants under the nutrient-deficient conditions. Although –N-deficient plants with or without VCL caused a decline in growth parameters, they significantly enhanced phytochemicals in 2-month-old plants. In most cases, the application of VCL to –P- and –K-deficient plants improved the photosynthetic pigments, protein, and phenolic, as well as flavonoid accumulation. Harvesting time was also found to play a crucial role in the accumulation of evaluated parameters in nutrient-deprived plants. From these findings, it can be deduced that VCL has a potential to minimize the effect of nutrient deficiency especially under –P and –K deficiency in C. triloba plants.  相似文献   

20.
Piriformospora indica is a mutualistic root-colonising basidiomycete that tranfers various benefits to colonized host plants including growth promotion, yield increases as well as abiotic and biotic stress tolerance. The fungus is characterized by a broad host spectrum encompassing various monocots and dicots.1,2 Our recent microarray-based studies indicate a general plant defense suppression by P. indica and significant changes in the GA biosynthesis pathway.3 Furthermore, barley plants impaired in GA synthesis and perception showed a significant reduction in mutualistic colonization, which was associated with an elevated expression of defense-related genes. Here, we discuss the importance of plant hormones for compatibility in plant root-P. indica associations. Our data might provide a first explanation for the colonization success of the fungus in a wide range of higher plants.Key words: compatibility, plant defense, gibberellic acid, symbiosis, plant hormones  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号