首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Distance-to-target weighting methods are widely used in life cycle impact assessment. The methods rank impacts as being more important the further away society’s activities are from achieving the desired targets for the pollutants. However, we feel that the scientific bases of the distance-to-target methods still need more clarification. This article illustrates how multiattribute value theory (MAVT) can be applied to interpret the impact category weights as well as the aggregation rule and normalisation used in the distant-to-target methods. Our comparison revealed that under certain conditions two of the three commonly used impact assessment methods (Ecoindicator 95, ET-method) applying distance-to-target weighting are consistent with the impact assessment framework derived from MAVT. This consistency holds for non-zero targets with equal importance and linear damage functions passing through the origin. We show that the MAVT framework offers a foundation for the methodological development in life cycle impact assessment.  相似文献   

3.

Purpose

In social life cycle assessment (SLCA), to measure the social performance, it is necessary to consider the subcategory indicators related to each stakeholder dimension, such as workers, local community, society, consumers and value chain participants. Current methods in SLCA scientific literature consider a standard arbitrary linear score set to translate qualitative performances into a quantitative assessment for all subcategory indicators, i.e., it translate a A, B, C, D scoring into a 4, 3, 2, 1 ordinal scale. This assumption does not cover the complexity of the subcategory indicators in the social life cycle assessment phase. The aim of this paper is to set out a customized scoring and weighting approach for impact assessment in SLCA beyond the assumption of arbitrary linearity and equal weighting.

Methods

This method overcomes the linearity assumption and develops specific value functions for each subcategory indicator and an approach to establish the weighting factors between the indicators for each social dimension (workers, local community, and society). The value function and weighting factors are based on the considered opinions of SLCA experts in Québec.

Results and discussion

The results show that value functions with different shapes used to score the performance of the product within each subcategory indicator influence SLCA results and have the potential to reverse the conclusions. The customized score is more realistic than the linear score because it can better capture the complexity of the subcategory indicators based on SLCA expert judgment.

Conclusions

Our approach addresses a methodological weakness of the impact assessment phase of SLCA through a more representative performance of the potential social impacts based on the judgment of the SLCA expert rather than a simplified assumption of linearity and equal weighting among indicators. This approach may be applied to all types of product systems.

Recommendations

The value functions and weighting factors cannot be generalized for all cases and the proposed approach must be adapted for each study. We stopped at the aggregation of the subcategory indicators based on expert judgment at the stakeholder level. If a complete aggregation in a single score is required, we recommend developing a framework that accounts for the value judgment of the decision-maker rather than the SLCA expert.
  相似文献   

4.
5.
The International Journal of Life Cycle Assessment - Weighting in life cycle assessment (LCA) incorporates stakeholder preferences in the decision-making process of comparative LCAs. Research...  相似文献   

6.
The procedure of screening LCIA with weighting methodology and the result of a case study have been described. The weighting methodology incorporates the impacts related with input and output by the simplified damage functions. Through the dominant analysis by this methodology, we can detect the significant substances and environmental problems in life cycle of the product. With this result, LCA practitioners can concentrate on the analysis for these items to improve the reliability of investigation effectively in the following step. According to the result of case study, an imaginary copy machine, the primary consideration in the foreseeable study should put emphasis on the analysis of the consumption of natural gas and wood, and the emission of carbon dioxide.  相似文献   

7.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

8.
9.
10.

Purpose

The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and economic burden in future construction projects.

Methods

The study consists of the life cycle assessment and life cycle costing of lodging in three building types: traditional, semi-modern and modern. The life cycle stages under analysis include raw material acquisition, manufacturing, construction, use, maintenance and material replacement. The study includes a sensitivity analysis focusing on the lifespan of buildings, occupancy rate and discount and inflation rates. The functional unit was formulated as the ‘Lodging of one additional guest per night’, and the time horizon is 50 years of building lifespan. Both primary and secondary data were used in the life cycle inventory.

Results and discussion

The modern building has the highest global warming potential (kg CO2-eq) as well as higher costs over 50 years of building lifespan. The results show that the use stage is responsible for the largest share of environmental impacts and costs, which are related to energy use for different household activities. The use of commercial materials in the modern building, which have to be transported mostly from the capital in the buildings, makes the higher GWP in the construction and replacement stages. Furthermore, a breakdown of the building components shows that the roof and wall of the building are the largest contributors to the production-related environmental impact.

Conclusions

The findings suggest that the main improvement opportunities in the lodging sector lie in the reduction of impacts on the use stage and in the choice of materials for wall and roof.
  相似文献   

11.

Background, aim, and scope

Uncertainty information is essential for the proper use of life cycle assessment (LCA) and environmental assessments in decision making. So far, parameter uncertainty propagation has mainly been studied using Monte Carlo techniques that are relatively computationally heavy to conduct, especially for the comparison of multiple scenarios, often limiting its use to research or to inventory only. Furthermore, Monte Carlo simulations do not automatically assess the sensitivity and contribution to overall uncertainty of individual parameters. The present paper aims to develop and apply to both inventory and impact assessment an explicit and transparent analytical approach to uncertainty. This approach applies Taylor series expansions to the uncertainty propagation of lognormally distributed parameters.

Materials and methods

We first apply the Taylor series expansion method to analyze the uncertainty propagation of a single scenario, in which case the squared geometric standard deviation of the final output is determined as a function of the model sensitivity to each input parameter and the squared geometric standard deviation of each parameter. We then extend this approach to the comparison of two or more LCA scenarios. Since in LCA it is crucial to account for both common inventory processes and common impact assessment characterization factors among the different scenarios, we further develop the approach to address this dependency. We provide a method to easily determine a range and a best estimate of (a) the squared geometric standard deviation on the ratio of the two scenario scores, “A/B”, and (b) the degree of confidence in the prediction that the impact of scenario A is lower than B (i.e., the probability that A/B<1). The approach is tested on an automobile case study and resulting probability distributions of climate change impacts are compared to classical Monte Carlo distributions.

Results

The probability distributions obtained with the Taylor series expansion lead to results similar to the classical Monte Carlo distributions, while being substantially simpler; the Taylor series method tends to underestimate the 2.5% confidence limit by 1-11% and the 97.5% limit by less than 5%. The analytical Taylor series expansion easily provides the explicit contributions of each parameter to the overall uncertainty. For the steel front end panel, the factor contributing most to the climate change score uncertainty is the gasoline consumption (>75%). For the aluminum panel, the electricity and aluminum primary production, as well as the light oil consumption, are the dominant contributors to the uncertainty. The developed approach for scenario comparisons, differentiating between common and independent parameters, leads to results similar to those of a Monte Carlo analysis; for all tested cases, we obtained a good concordance between the Monte Carlo and the Taylor series expansion methods regarding the probability that one scenario is better than the other.

Discussion

The Taylor series expansion method addresses the crucial need of accounting for dependencies in LCA, both for common LCI processes and common LCIA characterization factors. The developed approach in Eq. 8, which differentiates between common and independent parameters, estimates the degree of confidence in the prediction that scenario A is better than B, yielding results similar to those found with Monte Carlo simulations.

Conclusions

The probability distributions obtained with the Taylor series expansion are virtually equivalent to those from a classical Monte Carlo simulation, while being significantly easier to obtain. An automobile case study on an aluminum front end panel demonstrated the feasibility of this method and illustrated its simultaneous and consistent application to both inventory and impact assessment. The explicit and innovative analytical approach, based on Taylor series expansions of lognormal distributions, provides the contribution to the uncertainty from each parameter and strongly reduces calculation time.  相似文献   

12.
13.

Purpose

The objectives of this study are to evaluate life cycle assessment (LCA) for concrete mix designs containing alternative cement replacement materials in comparison with conventional 100% general use cement concrete and to evaluate the interplay and sensitivity of LCA for four concrete mix designs and six functional units which range in degrees of complexity and variables.

Methods

Six functional units with varying degrees of complexity are included in the analysis: (i) volume of concrete, (ii) volume and 28-day compressive strength, (iii) volume and 28-day rapid chloride permeability (RCP), (iv) volume and binder intensity, (v) volume and a combination of compressive strength and RCP and (vi) volume and a combination of binder intensity and RCP. Four reference flows are included in the analysis: three concrete mix designs containing slag, silica fume and limestone cement as cement replacement and one concrete mix design for conventional concrete.

Results and discussion

All three alternative mix designs were evaluated to have lower environmental impacts compared with the base 100% general use cement and so are considered to be ‘green’ concrete. Similar LCA results were observed for FU1, FU2 and FU4, and relatively similar results were obtained for FU3, FU5 and FU6. LCA conducted with functional units which were a function of durability exhibited markedly different (lower) LCA compared with the functional units that did not capture long-term durability.

Conclusions

Outcomes of this study portray the interplay between concrete mix design materials, choice of functional unit and environmental impact based on LCA. The results emphasize (i) the non-linearity between material properties and environmental impact and (ii) the importance of conducting an LCA with a selected functional unit that captures the concrete’s functional performance metrics specific to its application and expected exposure conditions. Based on this study, it is recommended that a complete LCA for a given concrete mix design should entail examination of multiple functional units in order to identify the range of environmental impacts or the optimal environmental impacts.
  相似文献   

14.
The conclusions about the development of the content of the LC Initiative are the following:
–  A specific niche for the Life Cycle Initiative has developed, compared with the role of SETAC, the International Society of Industrial Ecology (ISIE) and ISO.
–  The aims of the initiative have step by step been extended, by bringing the initiative at a world level, by including both LCI and LCIA, and by including a program on Life Cycle Management (LCM).
–  In the LCM program due attention is to be given to other tools and approaches than quantitative LCA which are relevant for life-cycle thinking in general, and also to the other two dimensions of sustainability, i.e. the social and economic dimensions.
–  A number of important questions regarding the scope of the initiative and the methodological set-up have been in-depth discussed, thus resulting in a clear basis for the technical content of work to come.
–  Three definition studies will now be implemented which will define the work program for the three programs of the initiative; these studies will be finalised by the end of 2002.
  相似文献   

15.

Purpose

Improper disposal of used polyethylene terephthalate (PET) bottles constitute an eyesore to the environmental landscape and is a threat to the flourishing tourism industry in Mauritius. It is therefore imperative to determine a suitable disposal method of used PET bottles which not only has the least environmental load but at the same time has minimum harmful impacts on peoples employed in waste disposal companies. In this respect, the present study investigated and compared the environmental and social impacts of four selected disposal alternatives of used PET bottles.

Methods

Environmental impacts of the four disposal alternatives, namely: 100 % landfilling, 75 % incineration with energy recovery and 25 % landfilling, 40 % flake production (partial recycling) and 60 % landfilling and 75 % flake production and 25 % landfilling, were determined using ISO standardized life cycle assessment (ISO 14040:2006) and with the support of SimaPro 7.1 software. Social life cycle assessments were performed based on the UNEP/SETAC Guidelines for Social Life Cycle Assessment of products. Three stakeholder categories (worker, society and local community) and eight sub-category indicators (child labour, fair salary, forced labour, health and safety, social benefit/social security, discrimination, contribution to economic development and community engagement) were identified to be relevant to the study. A new method for aggregating and analysing the social inventory data is proposed and used to draw conclusions.

Results and discussion

Environmental life cycle assessment results indicated that highest environmental impacts occurred when used PET bottles were disposed by 100 % landfilling while disposal by 75 % flake production and 25 % landfilling gave the least environmental load. Social life cycle assessment results indicated that least social impacts occurred with 75 % flake production and 25 % landfilling. Thus both E-LCA and S-LCA rated 75 % flake production and 25 % landfilling to be the best disposal option.

Conclusions

Two dimensions of sustainability (environmental and social) when investigated using the Life Cycle Management tool, favoured scenario 4 (75 %?% flake production and 25 % landfilling) which is a partial recycling disposal route. One hundred percent landfilling was found out to be the worst scenario. The next step will be to explore the third pillar of sustainability, economic, and devise a method to integrate the three dimensions with a view to determine the sustainable disposal option of used PET bottles in Mauritius.  相似文献   

16.
农业生命周期评价研究进展   总被引:1,自引:0,他引:1  
作为评价产品系统全链条环境影响的有效工具,生命周期评价(LCA)方法已广泛用于工业领域。农业领域也面临着高强度的资源和环境压力,LCA在农业领域的应用应运而生。旨在综述已有农业LCA研究的基础上,鉴别农业LCA应用存在的问题,并为农业LCA未来的发展提出建议。目前农业LCA存在系统边界和功能单位界定不明晰、缺少区域清单数据库、生命周期环境影响评价模型(LCIA)不能准确反映农业系统环境影响、结果解释存在误区等方面的问题。为了科学准确地衡量农业系统的环境影响,促进农业系统的可持续发展,文章认为农业LCA应该从以下几个方面加强研究,即科学界定评价的参照系、系统边界的扩大及功能单位的合理选取、区域异质性数据库构建与LCIA模型开发、基于组织农业LCA的开发以及对于利益相关者行为的研究。  相似文献   

17.
18.

Purpose  

The interest in life cycle assessment (LCA) studies has increased over the years, and one of the main ways of disseminating these studies is through the publication of articles in scientific journals. Coauthorship relations form a social network where it is possible to identify how research is organized and structured in a specific field of knowledge. This paper aims to show the spread of these studies and the configuration of a collaboration network based on coauthorship relations between researchers of LCA considering some properties of social networks.  相似文献   

19.
The International Journal of Life Cycle Assessment - The purpose of this document is to carry out a critical review of the existing literature by specifically addressing the following: (i) the...  相似文献   

20.
Goal, Scope and Background In face of continued declines in global fisheries landings and concurrent rapid aquaculture development, the sustainability of seafood production is of increasing concern. Life Cycle Assessment (LCA) offers a convenient means of quantifying the impacts associated with many of the energetic and material inputs and outputs in these industries. However, the relevant but limited suite of impact categories currently used in most LCA research fails to capture a number of important environmental and social burdens unique to fisheries and aquaculture. This article reviews the impact categories used in published LCA research of seafood production to date, reports on a number of methodological innovations, and discusses the challenges to and opportunities for further impact category developments. Main Features The range of environmental and socio-economic impacts associated with fisheries and aquaculture production are introduced, and both the commonly used and innovative impact categories employed in published LCA research of seafood production are discussed. Methodological innovations reported in agricultural LCAs are also reviewed for possible applications to seafood LCA research. Challenges and options for including additional environmental and socioeconomic impact categories are explored. Results A review of published LCA research in fisheries and aquaculture indicates the frequent use of traditional environmental impact categories as well as a number of interesting departures from the standard suite of categories employed in LCA studies in other sectors. Notable examples include the modeling of benthic impacts, by-catch, emissions from anti-fouling paints, and the use of Net Primary Productivity appropriation to characterize biotic resource use. Socio-economic impacts have not been quantified, nor does a generally accepted methodology for their consideration exist. However, a number of potential frameworks for the integration of such impacts into LCA have been proposed. Discussion LCA analyses of fisheries and aquaculture call attention to an important range of environmental interactions that are usually not considered in discussions of sustainability in the seafood sector. These include energy use, biotic resource use, and the toxicity of anti-fouling paints. However, certain important impacts are also currently overlooked in such research. While prospects clearly exist for improving and expanding on recent additions to environmental impact categories, the nature of the LCA framework may preclude treatment of some of these impacts. Socio-economic impact categories have only been described in a qualitative manner. Despite a number of challenges, significant opportunities exist to quantify several important socio-economic impacts. Conclusion The limited but increasing volume of LCA research of industrial fisheries and aquaculture indicates a growing interest in the use of LCA methodology to understand and improve the sustainability performance of seafood production systems. Recent impact category innovations, and the potential for further impact category developments that account for several of the unique interactions characteristic of fisheries and aquaculture will significantly improve the usefulness of LCA in this context, although quantitative analysis of certain types of impacts may remain beyond the scope of the LCA framework. The desirability of incorporating socio-economic impacts is clear, but such integration will require considerable methodological development. Recommendations and Perspectives While the quantity of published LCA research for seafood production systems is clearly increasing, the influence this research will have on the ground remains to be seen. In part, this will depend on the ability of LCA researchers to advance methodological innovations that enable consideration of a broader range of impacts specific to seafood production. It will also depend on the ability of researchers to communicate with a broader audience than the currently narrow LCA community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号