首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

As the average wood products usage per unit of floor area in Australia has decreased significantly over time, there is potential for increased greenhouse gas (GHG) mitigation benefits through an increased use of wood products in buildings. This study determined the GHG outcomes of the extraction, manufacture, transport, use in construction, maintenance and disposal of wood products and other building materials for two popular house designs in Sydney, Australia.

Methods

The life cycle assessment (LCA) was undertaken using the computer model SimaPro 7.1, with the functional unit being the supply of base building elements for domestic houses in Sydney and its subsequent use over a 50-year period. The key data libraries used were the Australian Life Cycle Inventory library, the ecoinvent library (with data adapted to Australian circumstances where appropriate) and data for timber production from an Australian study for a range of Australian forestry production systems and wood products. Two construction variations were assessed: the original intended construction, and a “timber-maximised” alternative. The indicator assessed was global warming, as the focus was on GHG emissions, and the effect of timber production, use and disposal on the fate of carbon.

Results and discussion

The timber maximised design resulted in approximately half the GHG emissions associated with the base designs. The sub-floor had the largest greenhouse impact due to the concrete components, followed by the walls due to the usage of bricks. The use of a “timber maximised” design offset between 23 and 25 % of the total operational energy of the houses. Inclusion of carbon storage in landfill made a very significant difference to GHG outcomes, equivalent to 40–60 % of total house GHG emissions. The most beneficial options for disposal from a GHG perspective were landfill and incineration with energy recovery.

Conclusions

The study showed that significant GHG emission savings were achieved by optimising the use of wood products for two common house designs in Sydney. The switch of the sub-floor and floor covering components to a “wood” option accounted for most of the GHG savings. Inclusion of end of life parameters significantly impacted on the outcomes of the study.  相似文献   

2.

Purpose

A cascading utilization of resources is encouraged especially by legislative bodies. However, only few consecutive assessments of the environmental impacts of cascading are available. This study provides answers to the following questions for using recovered wood as a secondary resource: (1) Does cascading decrease impacts on the environment compared to the use of primary wood resources? (2) What aspects of the cascading system are decisive for the life cycle assessment (LCA) results?

Methods

We conducted full LCAs for cascading utilization options of waste wood and compared the results to functionally equivalent products from primary wood, thereby focusing on the direct effects cascading has on the environmental impacts of the systems. In order to compare waste wood cascading to the use of primary wood with LCA, a functional equivalence of the systems has to be achieved. We applied a system expansion approach, considering different options for providing the additionally needed energy for the cascading system.

Results and discussion

We found that the cascading systems create fewer environmental impacts than the primary wood systems, if system expansion is based on wood energy. The most noticeable advantages were detected for the impact categories of land transformation and occupation and the demand of primary energy from renewable sources. The results of the sensitivity analyses indicate that the advantage of the cascading system is robust against the majority of considered factors. Efficiency and the method of incineration at the end of life do influence the results.

Conclusions

To maximize the benefits and minimize the associated environmental impacts, cascading proves to be a preferable option of utilizing untreated waste wood.  相似文献   

3.

Background, aim, and scope

When dealing with system delimitation in environmental life cycle assessment (LCA), two methodologies are typically referred to: consequential LCA and attributional LCA. The consequential approach uses marginal data and avoids co-product allocation by system expansion. The attributional approach uses average or supplier-specific data and treats co-product allocation by applying allocation factors. Agricultural LCAs typically regard local production as affected and they only include the interventions related to the harvested area. However, as changes in demand and production may affect foreign production, yields and the displacement of other crops in regions where the agricultural area is constrained, there is a need for incorporating the actual affected processes in agricultural consequential LCA. This paper presents a framework for defining system boundaries in consequential agricultural LCA. The framework is applied to an illustrative case study; LCA of increased demand for wheat in Denmark. The aim of the LCA screening is to facilitate the application of the proposed methodology. A secondary aim of the LCA screening is to illustrate that there are different ways to meet increased demand for agricultural products and that the environmental impact from these different ways vary significantly.

Materials and methods

The proposed framework mainly builds on the work of Ekvall T, Weidema BP (Int J Life Cycle Assess 9(3):pp. 161–171, 2004), agricultural statistics (FAOSTAT, FAOSTAT Agriculture Data, Food and Agriculture Organisation of the United Nations (2006), http://apps.fao.org/ (accessed June)), and agricultural outlook (FAPRI, US and world agricultural outlook, Food and Agriculture Research Institute, Iowa, 2006a). The framework and accompanying guidelines concern the suppliers affected, the achievement of increased production (area or yield), and the substitutions between crops. The framework, which is presented as a decision tree, proposes four possible systems that may be affected as a result of the increased demand of a certain crop in a certain area.

Results

The core of the proposed methodology is a decision tree, which guides the identification of affected processes in consequential agricultural LCA. The application of the methodology is illustrated with a case study presenting an LCA screening of wheat in Denmark. Different scenarios of how increased demand for wheat can be met show significant differences in emission levels as well as land use.

Discussion

The great differences in potential environmental impacts of the analysed results underpin the importance of system delimitation. The consequential approach is appointed as providing a more complete and accurate but also less precise result, while the attributional approach provides a more precise result but with inherent blind spots, i.e. a less accurate result.

Conclusions

The main features of the proposed framework and case study are: (1) an identification of significant sensitivity on results of system delimitation, and (2) a formalised way of identifying blind spots in attributional agricultural LCAs.

Recommendations and perspectives

It is recommended to include considerations on the basis of the framework presented in agricultural LCAs if relevant. This may be done either by full quantification or as qualitative identification of the most likely ways the agricultural product system will respond on changed demand. Hereby, it will be possible to make reservations to the conclusions drawn on the basis of an attributional LCA.  相似文献   

4.

Purpose

Multi-product processes are one source of multi-functionality causing widely discussed methodological problems within life cycle assessment. A multi-functionality problem exists for comparative life cycle assessment (LCA) of multi-product processes with non-common products. This work develops a systematic workflow for fixing the multi-functionality problem caused by the non-common products. A novel technology for chlor-alkali electrolysis is analyzed and compared to the industrial standard technology to illustrate the approach and to benchmark the new technology's environmental impact.

Methods

A matrix-based workflow for comparative LCA of multi-product systems is presented. Products are distinguished in main products and by-products based on the reason of process operation. We argue that only main products form the reference flows of the compared multi-product systems. Fixing the multi-functionality problem follows directly from the chosen reference flows. The framework suggests system expansion to fix the multi-functionality problem if non-common main products exist. Non-common by-products still cause a multi-functionality problem. These by-products are systematically identified and the multi-functionality problem is fixed with avoided burden and allocation. A case study applies the workflow for comparing environmental impacts of the standard chlorine electrolysis to a novel process using oxygen-depolarized cathodes. Three scenarios are derived and evaluated. The assessed impact categories are cumulative energy demand, global warming potential, acidification potential, photochemical ozone creation potential, eutrophication potential, and human toxicity potential.

Results and discussion

The proposed workflow minimizes the methodological choices. The multi-functionality problem is systematically fixed based on the distinction between the main products and by-products. Inconsistent solutions are prevented by rigorous identification of unequal by-products within the compared systems. Selecting avoided burden processes or allocation factors is the remaining ambiguous choice common to the standard methods. The case study demonstrates the applicability of the workflow to comparative LCA of multi-product systems. The case study results show lower environmental impacts for the novel electrolysis technology in all practically relevant scenarios and impact categories.

Conclusions

The framework for comparative LCA of multi-product systems with non-common products adds systematic clarity to the general ISO standards. The approach reduces the subjective choices of LCA practitioners to the identification of reason of process operation. This reason is defined if the site-specific economic conditions are known. The matrix-based formulation allows identification of inconsistencies caused by multi-functionality. For the novel electrolysis technology, the results indicate significant potential for environmental impact reduction.  相似文献   

5.

Purpose

Perennial crops globally provide a lot of fruit and other food products. They may also provide feedstock for bioenergy and have been, notably to this end, the subject of several LCA-based studies mostly focusing on energy and GHG balances. The purpose of this review was to investigate the relevance of LCAs on perennial crops, especially focusing on how the perennial crop specificities were accounted for in the farm stage modelling.

Methods

More than 100 papers were reviewed covering 14 products from perennial crops: apple, banana (managed over several years), orange and other citrus fruits, cocoa, coconut, coffee, grape fruit, Jatropha oil, kiwi fruit, palm oil, olive, pear and sugarcane. These papers were classified into three categories according to the comprehensiveness of the LCA study and depending on whether they were peer-reviewed or not. An in-depth analysis of the goal and scope, data origin for farming systems, modelling approach for the perennial cropping systems and methods and data for field emissions helped reveal the more critical issues and design some key recommendations to account better for perennial cropping systems in LCA.

Results and discussion

In the vast majority of the reviewed papers, very little attention was paid on integrating the perennial cropping cycle in the LCA. It is especially true for bioenergy LCA-based studies that often mostly focused on the industrial transformation without detailing the agricultural raw material production, although it might contribute to a large extent to the studied impacts. Some key parameters, such as the length of the crop cycle, the immature and unproductive phase or the biannual yield alternance, were mostly not accounted for. Moreover, the lack of conceptual modelling of the perennial cycle was not balanced by any attempt to represent the temporal variability of the system with a comprehensive inventory of crop managements and field emissions over several years.

Conclusions

According to the reviewed papers and complementary references, we identified the gaps in current LCA of perennial cropping systems and proposed a road map for scientific researches to help fill-in the knowledge-based gaps. We also made some methodological recommendations in order to account better for the perennial cycle within LCA considering the aim of the study and data availability.  相似文献   

6.

Purpose

Temporal variability is a major source of uncertainty in current life cycle assessment (LCA) practice. In this paper, the recently developed dynamic LCA approach is adapted to assess freshwater ecotoxicity impacts of metals. The objective is to provide relevant information regarding the distribution and magnitude of metal impacts over time and to show whether the dynamic approach significantly influences the conclusions of an LCA. An LCA of zinc fertilization in agriculture was therefore carried out.

Methods

Dynamic LCA is based on the temporal disaggregation of the inventory, which is then assessed using time-horizon-dependent characterization factors. The USEtox multimedia fate model is used to develop time-horizon-dependent characterization factors for the freshwater ecotoxicity impact of 18 metals. Mass balance equations are solved dynamically to obtain fate factors as a function of time, providing both instantaneous (impact at time t following a pulse emission) and cumulative (total time-integrated impact following a pulse emission) characterization factors (CFs).

Results and discussion

Time-horizon-dependent CFs for freshwater ecotoxicity depend on the emission compartment and the metal itself. The two variables clearly influence metal fate aspects such as the maximum mass loading reaching freshwater and the persistence time of metals into this compartment. The time needed to reach the total impact for each metal may exceed thousands of years, so the time horizon used in the analysis constitutes a determining factor. The case study reveals that the results of a classical LCA are always higher than those obtained from a dynamic LCA, especially for short time horizons. For instance, at the end of a 100-year fertilization treatment, only 25 % of the impacts obtained through traditional LCA occurred.

Conclusions

Results show that dynamic LCA enables assessing freshwater ecotoxicity impacts of metals over time, allowing decision makers to test the sensitivity of their results to the choice of a time horizon. For the particular case study of zinc fertilization over a period of 20 years, the use of time-horizon-dependent CFs is more important in determining the dynamics of impacts than the timing of emission.  相似文献   

7.

Purpose

Despite a mature debate on the importance of a time-dependent account of carbon fluxes in life cycle assessments (LCA) of forestry products, static accounts of fluxes are still common. Time-explicit inventory of carbon fluxes is not available to LCA practitioners, since the most commonly used life cycle inventory (LCI) databases use a static approach. Existing forest models are typically applied to specific study fields for which the detailed input parameters required are available. This paper presents a simplified parametric model to obtain a time-explicit balanced account of the carbon fluxes in a forest for use in LCA. The model was applied to the case of spruce as an example.

Methods

The model calculated endogenous and exogenous carbon fluxes in tons of carbon per hectare. It was designed to allow users to choose (a) the carbon pools to be included in the analysis (aboveground and belowground carbon pools, only aboveground carbon or only carbon in stem); (b) a linear or sigmoidal dynamic function describing biomass growth; (c) a sigmoidal, negative exponential or linear dynamic function describing independently the decomposition of aboveground and belowground biomass; and (d) the forest management features such as stand type, rotation time, thinning frequency and intensity.

Results and discussion

The parametric model provides a time-dependent LCI of forest carbon fluxes per unit of product, taking into account the typically limited data available to LCA practitioners, while providing consistent and robust outcomes. The results obtained for the case study were validated with the more complex CO2FIX. The model ensures carbon balance within spatial and time delimitation defined by the user by accounting for the annual biomass degradation and production in each carbon pool. The inventory can be used in LCA studies and coupled with classic indicators (e.g. global warming potential) to accurately determine the climate impacts over time. The model is applicable globally and to any forest management practice.

Conclusions

This paper proposes a simplified and flexible forest model, which facilitates the implementation in LCA of time-dependent assessments of bio-based products.
  相似文献   

8.

Purpose

A complete assessment of water use in life cycle assessment (LCA) involves modelling both consumptive and degradative water use. Due to the range of environmental mechanisms involved, the results are typically reported as a profile of impact category indicator results. However, there is also demand for a single score stand-alone water footprint, analogous to the carbon footprint. To facilitate single score reporting, the critical dilution volume approach has been used to express a degradative emission in terms of a theoretical water volume, sometimes referred to as grey water. This approach has not received widespread acceptance and a new approach is proposed which takes advantage of the complex fate and effects models normally employed in LCA.

Methods

Results for both consumptive and degradative water use are expressed in the reference unit H2Oe, enabling summation and reporting as a single stand-alone value. Consumptive water use is assessed taking into consideration the local water stress relative to the global average water stress (0.602). Concerning degradative water use, each emission is modelled separately using the ReCiPe impact assessment methodology, with results subsequently normalised, weighted and converted to the reference unit (H2Oe) by comparison to the global average value for consumptive water use (1.86?×?10?3 ReCiPe points m?3).

Results and discussion

The new method, illustrated in a simplified case study, incorporates best practice in terms of life cycle impact assessment modelling for eutrophication, human and eco-toxicity, and is able to assimilate new developments relating to these and any other impact assessment models relevant to water pollution.

Conclusions

The new method enables a more comprehensive and robust assessment of degradative water use in a single score stand-alone water footprint than has been possible in the past.  相似文献   

9.

Purpose

This paper compares 16 waste lubricant oil (WLO) systems (15 management alternatives and a system in use in Portugal) using a life cycle assessment (LCA). The alternatives tested use various mild processing techniques and recovery options: recycling during expanded clay production, recycling and electric energy production, re-refining, energy recovery during cement production, and energy recovery during expanded clay production.

Methods

The proposed 15 alternatives and the actual present day situation were analyzed using LCA software UMBERTO 5.5, applied to eight environmental impact categories. The LCA included an expansion system to accommodate co-products.

Results

The results show that mild processing with low liquid gas fuel consumption and re-refining is the best option to manage WLO with regard to abiotic depletion, eutrophication, global warming, and human toxicity environmental impacts. A further environmental option is to treat the WLO using the same mild processing technique, but then send it to expanded clay recycling to be used as a fuel in expanded clay production, as this is the best option regarding freshwater sedimental ecotoxicity, freshwater aquatic ecotoxicity, and acidification.

Conclusions

It is recommended that there is a shift away from recycling and electric energy production. Although sensitivity analysis shows re-refining and energy recovery in expanded clay production are sensitive to unit location and substituted products emission factors, the LCA analysis as a whole shows that both options are good recovery options; re-refining is the preferable option because it is closer to the New Waste Framework Directive waste hierarchy principle.  相似文献   

10.

Purpose

This paper aims to sort the literatures on life cycle assessments (LCA) by their respective importance through citation and co-citation analysis and to further discuss the strengths and weaknesses of these kinds of scientometric methods in the case of LCA research.

Methods

CiteSpace II was used to generate document co-citation networks based on 3,824 articles retrieved from the ISI Web of Science database on this topic.

Results

Table 1 provides the top 50 highest cited documents in the LCA field. Here, we use two indicators, i.e., citation frequency in citation analysis and betweenness centrality metric in co-citation analysis, to measure the importance of these LCA literatures.

Conclusions

Citation and co-citation analysis are useful for environmental scientists and engineers to get a better understanding of the inner structure of LCA research. However, like all other research methods, this kind of analysis has some limitations. On the one hand, Scientometric studies and related software are very dependent on ISI Web of Science database, but considering the ISI Web of Science only began to track the LCA field fairly recently, the Scopus database would probably give a fuller picture. On the other hand, since the essence of scientometrics analysis is outsiders commenting insiders, so with only citation and co-citation analysis, to our understanding of the past, present, and future of LCA field, is insufficient.  相似文献   

11.

Background, aim, and scope

Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attractive option for one energy application, as transport fuel. Many studies on the LCA of fuel ethanol have been conducted, and the results vary to a large extent. In most of these studies, only one type of allocation is applied. However, the effect of allocation on outcomes is of crucial importance to LCA as a decision supporting tool. This is only addressed in a few studies to a limited extent. Moreover, most of the studies mainly focus on fossil energy use and GHG emissions. In this paper, a case study is presented wherein a more complete set of impact categories is used. Land use has been left out of account as only hectare data would be given which is obviously dominated by agriculture. Moreover, different allocation methods are applied to assess the sensitivity of the outcomes for allocation choices.

Materials and methods

This study focuses on the comparison of LCA results from the application of different allocation methods by presenting an LCA of gasoline and ethanol as fuels and with two types of blends of gasoline with ethanol, all used in a midsize car. As a main second-generation application growing fast in the USA, corn stover-based ethanol is chosen as a case study. The life cycles of the fuels include gasoline production, corn and stover agriculture, cellulosic ethanol production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85% of ethanol), and finally the use of gasoline, E10, E85, and ethanol. In this study, a substantially broader set of eight environmental impacts is covered.

Results

LCA results appear to be largely dependent on the allocation methods rendered. The level of abiotic depletion and ozone layer depletion decrease when replacing gasoline by ethanol fuels, irrespective of the allocation method applied, while the rest of the impacts except global warming potential are larger. The results show a reduction of global warming potential when mass/energy allocation is applied; in the case of economic allocation, it gives contrary results. In the expanded systems, global warming potential is significantly reduced comparing to the ones from the allocated systems. A contribution analysis shows that car driving, electricity use for cellulase enzyme production, and ethanol conversion contribute largely to global warming potential from the life cycle of ethanol fuels.

Discussion

The reason why the results of global warming potential show a reverse trend is that the corn/stover allocation ratio shifts from 7.5 to 1.7 when shifting from economic allocation to mass/energy allocation. When mass/energy allocation is applied, both more credits (CO2 uptake) and more penalties (N2O emission) in agriculture are allocated to stover compared to the case of economic allocation. However, more CO2 is taken up than N2O (in CO2 eq.) emitted. Hence, the smaller the allocation ratio is between corn and stover, the lower the share of the overall global warming emissions being allocated to ethanol will be. In the system expansion approach, global warming potentials are significantly reduced, resulting in the negative values in all cases. This implies that the system expansion results are comparable to one another because they make the same cutoffs but not really to the results related to mass, energy, and economic value-based allocated systems.

Conclusions

The choice of the allocation methods is essential for the outcomes, especially for global warming potential in this case. The application of economic allocation leads to increased GWP when replacing gasoline by ethanol fuels, while reduction of GWP is achieved when mass/energy allocation is used as well as in the system where biogenic CO2 is excluded. Ethanol fuels are better options than gasoline when abiotic depletion and ozone layer depletion are concerned. In terms of other environmental impacts, gasoline is a better option, mainly due to the emissions of nutrients and toxic substances connected with agriculture. A clear shift of problems can be detected: saving fossil fuels at the expense of emissions related to agriculture, with GHG benefits depending on allocation choices. The overall evaluation of these fuel options, therefore, depends very much on the importance attached to each impact category.

Recommendations and perspectives

This study focuses only on corn stover-based ethanol as one case. Further studies may include other types of cellulosic feedstocks (i.e., switchgrass or wood), which require less intensive agricultural practice and may lead to better environmental performance of fuel ethanol. Furthermore, this study shows that widely used but different allocation methods determine outcomes of LCA studies on biofuels. This is an unacceptable situation from a societal point of view and a challenge from a scientific point of view. The results from applying just one allocation method are not sufficient for decision making. Comparison of different allocation methods is certainly of crucial importance. A broader approach beyond LCA for the analysis of biorefinery systems with regard to energy conservation, environmental impact, and cost–benefit will provide general indications on the sustainability of bio-based productions.  相似文献   

12.

Purpose

Hazard-resistant materials for homes promise environmental benefits, such as avoided waste and materials for repairs, which can be overlooked by scoping in life-cycle assessment (LCA) approaches. Our motivation for pursuing this research was to see how incorporating these avoided losses in the LCA could impact choices between hazard-resistant and traditional materials.

Methods

Two choices common in home construction were analyzed using an LCA process that incorporates catastrophe modeling to consider avoided losses made possible with hazard-resistant materials. These findings were compared to those based on a similar LCA that did not consider these avoided losses. The choices considered were standard windows vs. windows with impact-resistant glass and standard windows with no opening protection vs. standard windows with impact-resistant storm panels.

Results and discussion

For the window comparisons, the standard products were environmentally preferable when avoided losses from storm events were not considered in the LCA. However, when avoided losses were considered, the hazard-resistant products were environmentally preferable. Considering avoided losses in LCAs, as illustrated by the window choices, can change which product appears to be the environmentally preferable option. Further, as home service life increases, the environmental net benefit of the hazard-resistant product increases.

Conclusions

Our results show the value of an LCA approach which allows more complete scopings of comparisons between hazard-resistant materials and their traditional counterparts. This approach will help translate the impacts of hazard-resistant products into the more familiar language used to talk about “green” products, enabling more informed decisions by product manufacturers, those who develop building certification systems and codes, researchers, and other building industry stakeholders.  相似文献   

13.

Purpose

The objective of the paper is to discuss the role of a new guidance document for life cycle assessment (LCA) in the construction sector available as an online InfoHub.

Methods

This InfoHub derives from the EeBGuide European project that aimed at developing a guidance document for energy-efficient building LCA studies. The InfoHub is built on reference documents such as the ISO 14040-44 standards, the EN 15804 and EN 15978 standards as well as the ILCD Handbook. The guidance document was filled with expertise and knowledge of several experts. The focus was put on providing scientifically sound, yet practical guidance.

Results

The EeBGuide InfoHub is an online guidance document, setting rules for conducting LCA studies and giving instructions on how to do this. The document has a section on buildings—new and existing—and a section on construction products. It is structured according to the life cycle stages of the European standards EN 15804 and EN 15978, covering all aspects of LCA studies by applying provisions from these standards and the ILCD handbook, wherever applicable. The guidance is presented for different scopes of studies by means of three study types. For the same system boundaries, default values are proposed in early or quick assessment (screening and simplified LCA) while detailed calculation rules correspond to a complete LCA. Such approach is intended to better match the user needs in the building sector.

Conclusions and recommendations

This paper can be viewed as a contribution to the ongoing efforts to improve the consistency and harmonisation in LCA studies for building products and buildings. Further contributions are now needed to improve building LCA guidance and to strengthen links between research, standardisation and implementation of LCA in the construction practice.  相似文献   

14.
Land use impacts on biodiversity in LCA: a global approach   总被引:1,自引:0,他引:1  

Purpose

Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs.

Methods

The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared.

Results and discussion

An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain.

Conclusions

The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed.  相似文献   

15.

Purpose

Sustainability assessments of buildings using the life cycle approach have become more and more common. This includes the assessment of the environmental performance of buildings. However, the influence of the construction products used for the fabric, the finishing, and the technical building equipment of buildings has hardly been described in literature. For this reason, we evaluated the influence of the technical building equipment and its impact on the environment for different residential buildings.

Materials and methods

Five residential buildings were evaluated by applying the methodology of life cycle assessment (LCA) (ISO14040) expressed using quantitative assessment categories according to prEN15978.

Results and discussion

Results show that the optimization of energy performance has already reached a high level in Austria, so that the overall potential for possible improvements is quite low. Especially in low-energy and passive?Chouse-standard residential buildings, the limits for energy optimization in the use phase have mostly been achieved. In contrast to this, the integrated LCA (iLCA) findings attribute a high optimization potential to the construction products used for the technical building equipment as well as to the building fabric and finishing. Additionally, the passive house shows the lowest contribution of the technical building equipment on the overall LCA results.

Conclusions

The iLCA findings suggest that it is recommended to include the technical building equipment for future assessments of the environmental performance of buildings. It is also suggested to use a broad number of environmental indicators for building LCA.  相似文献   

16.

Purpose

The possibilities for full life cycle assessment (LCA) of new Information and Communication Technology (ICT) products are often limited, so simplification approaches are needed. The aim of this paper is to investigate possible simplifications in LCA of a mobile phone and to use the results to discuss the possibilities of LCA simplifications for ICT products in a broader sense. Another aim is to identify processes and data that are sensitive to different methodological choices and assumptions related to the environmental impacts of a mobile phone.

Methods

Different approaches to a reference LCA of a mobile phone was tested: (1) excluding environmental impact categories, (2) excluding life cycle stages/processes, (3) using secondary process data from generic databases, (4) using input-output data and (5) using a simple linear relationship between mass and embodied emissions.

Results and discussion

It was not possible to identify one or a few impact categories representative of all others. If several impact categories would be excluded, information would be lost. A precautionary approach of not excluding impact categories is therefore recommended since impacts from the different life cycle stages vary between impact categories. Regarding use of secondary data for an ICT product similar to that studied here, we recommend prioritising collection of primary (specific) data on energy use during production and use, key component data (primarily integrated circuits) and process-specific data regarding raw material acquisition of specific metals (e.g. gold) and air transport. If secondary data are used for important processes, the scaling is crucial. The use of input-output data can be a considerable simplification and is probably best used to avoid data gaps when more specific data are lacking.

Conclusions

Further studies are needed to provide for simplified LCAs for ICT products. In particular, the end-of-life treatment stage need to be further addressed, as it could not be investigated here for all simplifications due to data gaps.  相似文献   

17.

Background

Worldwide there is growing research interest in the ethnobiology of mangrove forests. Notwithstanding that, little information has been published about ethnobiology of mangrove forests in Cameroon. The aims of this study were a) to analyze the harvesting methods and the local selling of mangrove wood products by loggers in the vicinity of Wouri estuary and b) to investigate the patterns of subsistence uses of mangrove wood products around the Douala-Edea reserve.

Methods

Semi-structured interviews were conducted with 120 active mangrove loggers in 23 Douala wood markets and 103 households located in three villages (Mbiako, Yoyo I and Yoyo II) close to Douala-Edea reserve. In each of the three densely populated villages, every second household was chosen for sampling while in all markets, mangrove loggers were chosen randomly. In addition, log diameters were measured in each market using a wooden foldable tape measure. A post hoc analysis (Newman-Keuls test) was performed in order to detect the common wood class diameter sold in the Douala wood markets.

Results

The analysis of the loggers' survey data has shown that large logs of Rhizophora with diameter greater than 40 cm were common in the Douala wood markets and were more closely associated with loggers who used chainsaws. In addition to the general mangroves wood products selling, the analysis on a subsistence level (households' survey) suggests the local population's dependence on mangroves, with multiple uses of Rhizophora racemosa Meyer, R. harrisonii Leechman, Avicennia germinans L. Stearn., Laguncularia racemosa Gaertn. f. and Conocarpus erectus L. timbers for furniture, fences, smoking fish, and fuelwood. Finally, Nypa fruticans (Thunb.) Wurmb. leaves were used as thatching material for house walls and roofs.

Conclusion

Our findings revealed that big logs of Rhizophora were commonly sold by the loggers. A majority of loggers (60%) reported that mangrove marketed wood constitute a principal source of income. Most of the villagers (85.83%) often depend on mangroves for subsistence needs and for them there is no substitute for mangrove wood. Therefore, more efforts should be undertaken at the national level to implement conservation, management and sustainable use of these coastal forests.  相似文献   

18.

Purpose

Life cycle assessment (LCA) studies of carbon footprint (CF) of milk from grass-based farms are usually limited to small numbers of farms (<30) and rarely certified to international standards, e.g. British Standards Institute publicly available specification 2050 (PAS 2050). The goals of this study were to quantify CF of milk from a large sample of grass-based farms using an accredited PAS 2050 method and to assess the relationships between farm characteristics and CF of milk.

Materials and methods

Data was collected annually using on-farm surveys, milk processor records and national livestock databases for 171 grass-based Irish dairy farms with information successfully obtained electronically from 124 farms and fed into a cradle to farm-gate LCA model. Greenhouse gas (GHG) emissions were estimated with the LCA model in CO2 equivalents (CO2-eq) and allocated economically between dairy farm products, except exported crops. Carbon footprint of milk was estimated by expressing GHG emissions attributed to milk per kilogram of fat and protein-corrected milk (FPCM). The Carbon Trust tested the LCA model for non-conformities with PAS 2050. PAS 2050 certification was achieved when non-conformities were fixed or where the effect of all unresolved non-conformities on CF of milk was?<?±5 %.

Results and discussion

The combined effect of LCA model non-conformities with PAS 2050 on CF of milk was <1 %. Consequently, PAS 2050 accreditation was granted. The mean certified CF of milk from grass-based farms was 1.11 kg of CO2-eq/kg of FPCM, but varied from 0.87 to 1.72 kg of CO2-eq/kg of FPCM. Although some farm attributes had stronger relationships with CF of milk than the others, no attribute accounted for the majority of variation between farms. However, CF of milk could be reasonably predicted using N efficiency, the length of the grazing season, milk yield/cow and annual replacement rate (R 2?=?0.75). Management changes can be applied simultaneously to improve each of these traits. Thus, grass-based farmers can potentially significantly reduce CF of milk.

Conclusions

The certification of an LCA model to PAS 2050 standards for grass-based dairy farms provides a verifiable approach to quantify CF of milk at a farm or national level. The application of the certified model highlighted a wide range between the CF of milk of commercial farms. However, differences between farms’ CF of milk were explained by variation in various aspects of farm performance. This implies that improving farm efficiency can mitigate CF of milk.  相似文献   

19.

Purpose

Until recently, life cycle assessments (LCAs) have only addressed the direct greenhouse gas emissions along a process chain, but ignored the CO2 emissions of land-use. However, for agricultural products, these emissions can be substantial. Here, we present a new methodology for including the implications of land occupation for CO2 emissions to realistically reflect the consequences of consumers?? decisions.

Method

In principle, one can distinguish five different approaches of addressing the CO2 consequences of land occupation: (1) assuming constant land cover, (2) land-use change related to additional production of the product under consideration, (3) historic land-use change, assuming historical relations between existing area and area expansion (4) land-use change related to less production of the product under consideration (??missed potential carbon sink?? of land occupation), and (5) an approach of integrating land conversion emissions and delayed uptake due to land occupation. Approach (4) is presented in this paper, using LCA data on land occupation, and carbon dynamics from the IMAGE model. Typically, if less production occurs, agricultural land will be abandoned, leading to a carbon sink when vegetation is regrowing. This carbon sink, which does not occur if the product would still be consumed, is thus attributed to the product as ??missed potential carbon sink??, to reflect the CO2 implications of land occupations.

Results

We analyze the missed potential carbon sink by relating land occupation data from LCA studies to the potential carbon sink as calculated by an Integrated Global Assessment Model and its process-based, spatially explicit carbon cycle model. Thereby, we account for regional differences, heterogeneity in land-use, and different time horizons. Example calculations for several livestock products show that the CO2 consequences of land occupation can be in the same order of magnitude as the other process related greenhouse gas emissions of the LCA, and depend largely on the production system. The highest CO2 implications of land occupation are calculated for beef and lamb, with beef production in Brazil having a missed potential carbon sink more than twice as high as the other GHG emissions.

Conclusions

Given the significant contribution of land occupation to the total GHG balance of agricultural products, they need to be included in life cycle assessments in a realistic way. The new methodology presented here reflects the consequences of producing or not producing a certain commodity, and thereby it is suited to inform consumers fully about the consequences of their choices.  相似文献   

20.

Purpose

Life cycle assessment (LCA) has been in the last one decade used as a standardized and structured method of evaluating the environmental impacts of aquaculture arising throughout the entire life cycle. However, aquaculture system hardly applied system expansion whenever a multifunctional process has more than one functional flow. The objective of this study is to develop a methodological approach for consequential LCA and model the system expansion of the different affected processes of aquaculture.

Methods

In this study, we have considered the system expansion in two different stages in the life cycle of the fish production: aquacultural stage, with case study of trout aquaculture, and feed manufacturing stage. Rainbow trout (Oncorhynchus mykiss) production was used as a case study to illustrate the method using different scenarios of system expansion.

Results and discussion

The results of the six different scenarios of system expansion showed considerable variation among the different scenarios towards the environmental impact of trout aquaculture. Regarding global warming potential, the contributions vary by 5-fold; for acidification, variations were up to 32 %, and for land use, the contributions varied from 0.6 to 1.3 m2a/kg of trout demanded in Germany. It appeared that eutrophication is similar in all the scenarios considered.

Conclusions

This article showed that system expansion can be used to handle the allocation issues of the co-products in the rainbow trout supply chain, thus, can be effectively used when analyzing the environmental consequences of changes in future rainbow trout production. Furthermore, consequential LCA may be important when comparing the impacts of alternative meal choices of aquafeeds. This may increase the incentive for speedy replacement of alternative meals, thus, reducing the dependence on the utilization of the limiting fisheries resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号