首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolomics aims to quantify all metabolites within an organism, thereby providing valuable insight into the metabolism of cells. To study intracellular metabolites, they are first extracted from the cells. The ideal extraction procedure should immediately quench metabolism and quantitatively extract all metabolites, a significant challenge given the rapid turnover and physicochemical diversity of intracellular metabolites. We have evaluated several quenching and extraction solutions for their suitability for mammalian cells grown in suspension. Quenching with 60% methanol (buffered or unbuffered) resulted in leakage of intracellular metabolites from the cells. In contrast, quenching with cold isotonic saline (0.9% [w/v] NaCl, 0.5 °C) did not damage cells and effectively halted conversion of ATP to ADP and AMP, indicative of metabolic arrest. Of the 12 different extraction methods tested, cold extraction in 50% aqueous acetonitrile was superior to other methods. The recovery of a mixture of standards was excellent, and the concentration of extracted intracellular metabolites was higher than for the other methods tested. The final protocol is easy to implement and can be used to study the intracellular metabolomes of mammalian cells.  相似文献   

2.
Protein contents of crude extracts from plant and animal tissues can be rapidly assayed using a Coomassie blue dye-binding procedure combined with scanning densitometry. Total protein is extracted from 100 mg of fresh-frozen or dried-ground tissue using 1 ml of extraction buffer. One-microliter aliquots of standard solutions or crude extracts are spotted in rows on a suitably sized sheet of Whatman 3MM chromatography paper. The dried samples are stained with Coomassie brilliant blue R-250 (0.2%, w/v, in acidified 50% MeOH) for 20 min and rinsed twice with acidified 20% MeOH. After drying, protein concentrations are read as reflectance using a scanning densitometer and peak heights or peak areas recorded using a digital integrator. In an alternative procedure, each spot is cut from the sample sheet and the dye-protein complex eluted in 1% sodium dodecyl sulfate (SDS) using an ultrasonic cleaner. Absorbance is subsequently read in a microwell sample holder at 590 nm with an enzyme-linked immunosorbent assay plate reader. Both procedures offer distinct advantages over previously reported methods. They are significantly faster when large numbers of samples are processed, they avoid interference by chlorophyll, dithiothreitol, SDS, 2-mercaptoethanol, Nonidet P-40, and phenylmethylsulfonyl fluoride (and other protease inhibitors) and they yield marked improvements in sensitivity, providing measurements of protein concentration below 100 and 200 ng.microliter-1, respectively.  相似文献   

3.
Simple and reliable protocols are described for an extensive analysis of metabolites in extracts from different biological sources. The separation was performed by high performance ionic-exchange chromatography (HPIC) at alkaline pH using two types of chromatography columns and two detection methods. Organic acids and inorganic anions were separated on an ionPac AS11 column using a 0.5 to 35 mM Na0H gradient. Detection limits in the range of milligrams per liter were achieved by use of a conductivity detector equipped with an anion self-regenerating suppressor. Twelve phosphorylated compounds belonging to the glycolytic and the pentose phosphate pathways could be resolved on a CarboPac PA1 column using a Na0H/Na-acetate gradient. Quantification was achieved by pulsed amperometry with detection limits in the micromolar range. Cell extracts obtained by extraction in boiling buffered ethanol described previously could be directly injected onto HPIC columns for the separation of metabolites because the extraction procedure affected neither the retention time nor the stability of most of the metabolites, and yielded very clean chromatograms. These improved protocols were applied for a dynamic analysis of intracellular metabolites in Saccharomyces cerevisiae in response to a glucose pulse.  相似文献   

4.
Free radicals are not only destructive to the living cells but also reduce the quality of animal products through oxidation. As a result the superoxide anion radical (O2-), one of the most destructive reactive oxygen species, is a matter of concern for the animal scientists as well as feed manufacturers to ensure the quality of product to reach consumers demand. The superoxide anion radical scavenging activities (SOSA) of water and MeOH extracts of 2 herbs and 9 pasture samples collected from lowland and highland swards were determined against a 5,5-dimethyl-1-pyroline-N-oxide-O2-spin adduct based on a hypoxanthine-xanthine oxidase reaction using electron spin resonance spectrometry. Both the water and MeOH extracted SOSA differed among the herbs and pastures. Species and altitudinal variations were observed between extraction methods. The herbs were higher in both water and MeOH extracted SOSA than the pastures except for water extracts of one pasture, white clover (Trifolium repens L.). Among the pastures, quackgrass (Agrophyron repens L.) showed higher SOSA in both the MeOH and water extracts, and timothy (Phleum pretense L.) showed higher MeOH extracted SOSA. It is apparent that the kind and amount of antioxidants differ among herbs and pastures. Animal health and quality of animal products could be improved by adequate selection and combining of herbs and pastures having higher SOSA.  相似文献   

5.
Integrated sampling procedure for metabolome analysis   总被引:4,自引:0,他引:4  
Metabolome analysis, the analysis of large sets of intracellular metabolites, has become an important systems analysis method in biotechnological and pharmaceutical research. In metabolic engineering, the integration of metabolome data with fluxome and proteome data into large-scale mathematical models promises to foster rational strategies for strain and cell line improvement. However, the development of reproducible sampling procedures for quantitative analysis of intracellular metabolite concentrations represents a major challenge, accomplishing (i) fast transfer of sample, (ii) efficient quenching of metabolism, (iii) quantitative metabolite extraction, and (iv) optimum sample conditioning for subsequent quantitative analysis. In addressing these requirements, we propose an integrated sampling procedure. Simultaneous quenching and quantitative extraction of intracellular metabolites were realized by short-time exposure of cells to temperatures < or =95 degrees C, where intracellular metabolites are released quantitatively. Based on these findings, we combined principles of heat transfer with knowledge on physiology, for example, turnover rates of energy metabolites, to develop an optimized sampling procedure based on a coiled single tube heat exchanger. As a result, this sampling procedure enables reliable and reproducible measurements through (i) the integration of three unit operations into a one unit operation, (ii) the avoidance of any alteration of the sample due to chemical reagents in quenching and extraction, and (iii) automation. A sampling frequency of 5 s(-)(1) and an overall individual sample processing time faster than 30 s allow observing responses of intracellular metabolite concentrations to extracellular stimuli on a subsecond time scale. Recovery and reliability of the unit operations were analyzed. Impact of sample conditioning on subsequent IC-MS analysis of metabolites was examined as well. The integrated sampling procedure was validated through consistent results from steady-state metabolite analysis of Escherichia coli cultivated in a chemostat at D = 0.1 h(-)(1).  相似文献   

6.
A procedure for the analysis of short-chain intracellular coenzyme A (CoA) esters and adenine nucleotide pools in microbial cells is described. The simultaneous isolation of bacterial cells from media, quenching of their metabolism, and extraction of metabolites was accomplished by centrifugation of cells through a layer of silicone oil into a denser solution of trichloroacetic acid. The acid was neutralized by extraction into Freon containing tri-n-octylamine to provide a salt-free solution of cell metabolites. After high-performance liquid chromatography separation, CoA, CoA esters, and adenine-containing nucleotides were derivatized by postcolumn reaction with bromoacetaldehyde to form the fluorescent 1,N6-ethenoadenine adducts which were analyzed by a fluorescence detector at picomolar levels.  相似文献   

7.
Pre-analytical treatments of bacteria are crucial steps in bacterial metabolomics studies. In order to achieve reliable samples that can best represent the global metabolic profile in vivo both qualitatively and quantitatively, many sample treatment procedures have been developed. The use of different methods makes it difficult to compare the results among different groups. In this work, E. coli samples were tested by using NMR spectroscopy. Both liquid N2 and cold methanol quenching procedures reduce the cell membrane integrity and cause metabolites leakage. However, liquid N2 quenching affected the cell viability and the NMR metabolites’ profile less than cold methanol procedure. Samples obtained by metabolite extraction were significantly superior over cell suspensions and cell lysates, with a higher number of detectable metabolites. Methanol/chloroform extraction proved most efficient at extraction of intracellular metabolites from both qualitative and quantitative points of view. Finally, standard operating procedures of bacterial sample treatments for NMR metabolomics study are presented.  相似文献   

8.
A rapid and cleanup-free microwave-assisted extraction (MAE) method is proposed for the simultaneous extraction of six illegal drugs of abuse – cocaine, benzoylecgonine (BZE), cocaethylene (CCE), morphine, 6-monoacethylmorphine (6AM) and codeine – from human hair samples. The analytes were determined using high performance liquid chromatography (HPLC) with photodiode array UV detection. The influence of several variables on the efficiency of the MAE procedure was investigated in detail by a multi-objective optimization approach based on a hybrid experimental design (17 experiments) and desirability functions. Six drugs were successfully extracted from human hair with recoveries close to 100% and good reproducibility (<3.6% RSD) under the optimal MAE conditions: 11 mL dichloromethane (DCM) extraction solvent, 60 °C extraction temperature, 9 min extraction time and 0.5 mL of methanol (MeOH) added to 50 mg of the hair sample in the extraction vessels. Limits of quantification of 0.2 ng mg?1 were found for the studied compounds. A comparison of sample preparation procedures, including MAE, enzymatic digestion and digestion by aqueous acids, was also conducted. The results indicated that the global behaviour of sample procedures provided similar satisfactory recoveries ranging from 86 to 100%. Indeed, the MAE procedure resulted in a reduction of extraction time by 100-fold and the elimination of cleanup steps. Slightly higher recoveries of morphine, 6AM, BZE and CCE, at 1 ng mg?1 concentration level and cocaine at 40 ng mg?1 concentration level, were achieved using MAE. Lastly, the proposed MAE method was applied to several human hair samples from multidrug abusers.  相似文献   

9.
10.
Methodology using MAE/SPME/GC-MS is being pursued for the analysis of organic pollutants in sebum. The microwave-assisted extraction (MAE) of standards of semi volatile organic pollutants from sebum was optimized. All compounds were extracted from sebum with recoveries analyzed by GC/MS ranging from 94% to 100% under the optimum MAE conditions: 10mL acetone-hexane (2:1), 60 degrees C, and 10 min microwave heating. To improve the detection limits a SPME procedure was optimized. Linearity ranged from 0.70 ppb to 25 ppb. R.S.D. were in the range of 1-23% for the SPME step. Preliminary real samples were analyzed and a range of compounds was detected. The optimized MAE/SPME/GC-MS methodology promises to be useful for different applications.  相似文献   

11.
This study treats the optimization of methods for homogenizing Arabidopsis thaliana plant leaves as well as cell cultures, and extracting their metabolites for metabolomics analysis by conventional liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). Absolute recovery, process efficiency and procedure repeatability have been compared between different pre-LC-MS homogenization/extraction procedures through the use of samples fortified before extraction with a range of representative metabolites. Hereby, the magnitude of the matrix effect observed in the ensuing LC-MS based metabolomics analysis was evaluated. Based on relative recovery and repeatability of key metabolites, comprehensiveness of extraction (number of m/z-retention time pairs) and clean-up potential of the approach (minimum matrix effects), the most appropriate sample pre-treatment was adopted. It combines liquid nitrogen homogenization for plant leaves with thermomixer based extraction using MeOH/H(2)O 80/20. As such, an efficient and highly reproducible LC-MS plant metabolomics set-up is achieved, as illustrated by the obtained results for both LC-MS (8.88%+/-5.16 versus 7.05%+/-4.45) and technical variability (12.53%+/-11.21 versus 9.31%+/-6.65) data in a comparative investigation of A. thaliana plant leaves and cell cultures, respectively.  相似文献   

12.
This study focuses on the specific problems of protein extraction from recalcitrant plant tissues and evaluates several methods to bypass them. Sample preparation is a critical step in a two-dimensional gel electrophoresis proteome approach and is absolutely essential for good results. We evaluated four methods: the classical trichloroacetic acid (TCA)/acetone precipitation, TCA/acetone precipitation and fractionation, an alternative based on fractionation and without precipitation, and phenol extraction methanol/ammonium acetate precipitation. We optimized the phenol extraction protocol for small amounts of tissue, which is essential when the study material is limited. The protocol was optimized for banana (Musa spp.) and was subsequently applied to two other plant species: apple (Malus domestica L.) and potato (Solanum tuberosum L.). Banana (Musa spp.) is a good representative of a "difficult" plant species since it contains many interfering metabolites. Only classical TCA/acetone precipitation and phenol extraction methods proved useful as standard methods. Both methods are associated with a minor but reproducible loss of proteins. Every extraction method and the subsequent analytical procedure have their physicochemical limitations; both methods should be investigated before selecting an appropriate protocol. The study, which is presented in this paper, is useful for guiding the experimental setup of many other nonmodel species, containing various interfering elements.  相似文献   

13.
The field of metabolomics is getting more and more popular and a wide range of different sample preparation procedures are in use by different laboratories. Chemical extraction methods using one or more organic solvents as the extraction agent are the most commonly used approach to extract intracellular metabolites and generate metabolite profiles. Metabolite profiles are the scaffold supporting the biological interpretation in metabolomics. Therefore, we aimed to address the following fundamental question: can we obtain similar metabolomic results and, consequently, reach the same biological interpretation by using different protocols for extraction of intracellular metabolites? We have used four different methods for extraction of intracellular metabolites using four different microbial cell types (Gram negative bacterium, Gram positive bacterium, yeast, and a filamentous fungus). All the quenched samples were pooled together before extraction, and, therefore, they were identical. After extraction and GC?CMS analysis of metabolites, we did not only detect different numbers of compounds depending on the extraction method used and regardless of the cell type tested, but we also obtained distinct metabolite levels for the compounds commonly detected by all methods (P-value?<?0.001). These differences between methods resulted in contradictory biological interpretation regarding the activity of different metabolic pathways. Therefore, our results show that different solvent-based extraction methods can yield significantly different metabolite profiles, which impact substantially in the biological interpretation of metabolomics data. Thus, development of alternative extraction protocols and, most importantly, standardization of sample preparation methods for metabolomics should be seriously pursued by the scientific community.  相似文献   

14.
In this study we report on the optimisation of the technologies for generation of a global metabolomics profile for intracellular metabolites in Chinese hamster ovary (CHO) cells. We evaluated the effectiveness of a range of different extraction methods applied to CHO cells which had been quenched using a previously optimised approach. The extraction methods tested included cold methanol, hot ethanol, acid, alkali and methanol/chloroform plus combinations of these. The extraction of metabolites using two 100% methanol extractions followed by a final water extraction recovered the largest range of metabolites. For the majority of metabolites, extracts generated in this manner exhibited the greatest recovery with high reproducibility. Therefore, this was the best extraction method for attaining a global metabolic profile from a single sample. However, another parallel extraction method (e.g. alkali) may also be required to maximise the range of metabolites recovered (e.g. non-polar metabolites).  相似文献   

15.
16.
The primary prostaglandins PGE(2) and PGF(2 alpha) are metabolized in tissues by a series of enzymatic and non-enzymatic reactions. To measure metabolic rates and individual reaction rates it is necessary to extract the parent prostaglandins and metabolites before the separation and quantification of each compound is achieved. Here we have established and optimized a solid phase extraction (SPE) procedure to recover PGE(2), PGF(2 alpha) and their six enzymatic and non-enzymatic tissue metabolites from aqueous solutions including urine, plasma and tissue homogenate. We have used octadecyl-bonded silica gel as the stationary phase and methanol-water mixtures as binary mobile phases. The volumes and concentrations of the washing and elution solutions were optimized individually for each PG. Recoveries of all PG standards were quantitative except for PGEM, which was recovered at 80% efficiency. Biological matrix components interfered with the extraction in a PG- and matrix-specific fashion. Inclusion of 1% formic acid in the loading mixture raised recoveries from urine, plasma and tissue homogenate to >or=90%. This SPE method is the first that has been optimized by systematic elution studies for PGE(2), PGF(2 alpha) and the complement of their tissue metabolites. The procedure is simple, robust and can serve as an effective pre-purification step before downstream separation and quantification of each tissue metabolite of PGE(2) and PGF(2 alpha) from complex biological matrices.  相似文献   

17.
Multivariate calibration methods are chemometric tools that may be applied to the analysis of spectroscopic data with multichannel detection. Two procedures, based on spectrophotometric and fluorimetric signals, are reported for the simultaneous determination of two fluoroquinolones (ciprofloxacin and ofloxacin) and two nonsteroidal anti-inflammatory drugs (diclofenac and mefenamic acid) using first- and second-order multivariate calibration methods. In the spectrophotometric method, an extractive procedure into chloroform using trioctylmethylammonium chloride-adogen as counter ion was optimized, with the object of extracting the analytes from urine samples and eliminating matrix interferences. After separation, the absorption spectrum of the organic phase was used as the analytical signal in a partial least squares method. A photoinduced spectrofluorimetric (PIF) method using excitation-emission fluorescence matrices, is proposed, to apply three-way chemometric calibration, with the aim of analyzing ofloxacin, ciprofloxacin, and diclofenac in urine samples without the previous extractive sample-cleaning step. For both procedures, recoveries around 100% were found for all the analytes. However, the PIF three-way chemometric method provides the most sensitive and selective procedure as the urine interferences are modulated using the three-way chemometric technique.  相似文献   

18.
An experimental set-up for acquiring metabolite and transient (13)C-labeling data in mammalian cells is presented. An efficient sampling procedure was established for hepatic cells cultured in six-well plates as a monolayer attached to collagen, which allowed simultaneous quenching of metabolism and extraction of the intracellular intermediates of interest. Extracellular concentrations of glucose, amino acids, lactate, pyruvate, and urea were determined by GC-MS procedures and were used for estimation of metabolic uptake and excretion rates. Sensitive LC-MS and GC-MS methods were used to quantify the intracellular intermediates of tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway and for the determination of isotopomer fractions of the respective metabolites. Mass isotopomer fractions were determined in a transient (13)C-labeling experiment using (13)C-labeled glucose as substrate. The absolute amounts of intracellular metabolites were obtained from a non-labeled experiment carried out in exactly the same way as the (13)C-labeling experiment, except that the media contained naturally labeled glucose only. Estimation of intracellular metabolic fluxes from the presented data is addressed in part II of this contribution.  相似文献   

19.
The understanding of mycotoxins transfer to biological fluids is challenged by the difficulties in performing and replicating in vivo experiments as well as the lack of suitable methods of analysis to detect simultaneously a range of chemically different metabolites at trace levels. LC-MS/MS has been used herein to study the urinary excretion profile of the mycotoxin deoxynivalenol in human and Wistar rat. Deoxynivalenol and deoxynivalenol glucuronide were found in both human and rat urines, whereas de-epoxydeoxynivalenol and its glucuronide conjugate were only detected in rat urine. The presence of two deoxynivalenol glucuronide isomers in Wistar rat urine has been shown for the first time. Structure confirmation of the detected metabolites was provided by the analysis of fragmentation patterns. A solid phase extraction clean up procedure allowing recoveries in the range 72-102% for deoxynivalenol, de-epoxydeoxynivalenol, and their glucuronide conjugates was optimized. A multiple reaction monitoring method for the simultaneous determination of all investigated metabolites was elaborated allowing the direct detection of deoxynivalenol metabolites without the hydrolysis step. Deoxynivalenol urinary levels in the range 0.003-0.008 μg/ml were detected in healthy human subjects, whereas deoxynivalenol and de-epoxynivalenol levels between 1.9-4.9 μg/ml and 1.6-5.9 μg/ml, respectively were found in administered rat urine. These findings emphasize the relevance of the highly selective and sensitive LC-MS/MS technique for the direct detection and characterization of deoxynivalenol metabolites in complex biological matrices.  相似文献   

20.
In order to perform comprehensive epidemiological studies where multiple metabolites of several PAHs are measured and compared in low-dose urine samples, fast and robust methods are needed to measure many analytes in the same sample. We have modified a previous method used for measuring polycyclic aromatic hydrocarbon (PAH) metabolites by automating the solid-phase extraction (SPE) and including an additional eight metabolites. We also added seven new carbon-13 labeled standards, which improves the use of isotope-dilution calibration. Our method included enzyme hydrolysis, automated SPE and derivatization with a silylating reagent followed by gas chromatography (GC), coupled with high-resolution mass spectrometry (HRMS). Using this method, we measured 23 metabolites, representing 9 parent PAHs, with detection limits in the low pg/mL range. All steps in the clean-up procedure were optimized individually, resulting in a method that gives good recoveries (69-93%), reproducibility (coefficient of variation for two quality control pools ranged between 4.6 and 17.1%, N>156), and the necessary specificity. We used the method to analyze nearly 3000 urine samples in the fifth National Health and Nutrition Examination Survey (NHANES 2001-2002).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号