首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
ObjectivesSelenoprotein P (SeP) is a selenium (Se) supply protein, which is an antioxidant micronutrient considered to be vital for human health. The aim of this study was to assess the serum selenium status in patients with silicosis.MethodsWe conducted a retrospective case–control study where serum samples from a total of 78 patients (males with a median age of 73.5 years old) with silicosis and 20 healthy controls (males with a median age of 72.5 years old) were assayed for Se and SeP. They underwent medical and job history taking, lung function testing, and chest radiography examinations. Levels of serum Se were measured using electrothermal atomic absorption spectrophotomerty, while levels of SeP were assessed with sandwich Enzyme Immunoassay. Spearman's rank correlation test was carried out to evaluate the relationship between Se and SeP. The Mann–Whitney test was used to evaluate differences in serum Se and SeP between study groups.ResultsThe median serum Se and SeP concentrations were significantly lower in cases (74.0 μg/l and 4.2 mg/l, respectively) compared with controls (116.0 μg/l and 5.8 mg/l, respectively). In both cases and controls, serum Se was positively correlated with serum SeP (rho = 0.781, p < 0.001 and rho = 0.768, p < 0.001, respectively). Serum Se and SeP levels were significantly lower in patients classified in category four compared with those who were classified in category two or three.ConclusionsSerum Se and SeP concentrations were found to be at inadequate levels in patients with silicosis, and decreased significantly with the severity of the disease.  相似文献   

3.
Deletion of the mouse selenoprotein P gene (Sepp1) lowers selenium concentrations in many tissues. We examined selenium homeostasis in Sepp1(-/-) and Sepp1(+/+) mice to assess the mechanism of this. The liver produces and exports selenoprotein P, which transports selenium to peripheral tissues, and urinary selenium metabolites, which regulate whole-body selenium. At intakes of selenium near the nutritional requirement, Sepp1(-/-) mice had whole-body selenium concentrations 72 to 75% of Sepp1(+/+) mice. Genotype did not affect dietary intake of selenium. Sepp1(-/-) mice excreted in their urine approximately 1.5 times more selenium in relation to their whole-body selenium than did Sepp1(+/+) mice. In addition, Sepp1(-/-) mice gavaged with (75)SeO(2-)(3) excreted 1.7 to 2.4 times as much of the (75)Se in the urine as did Sepp1(+/+) mice. These findings demonstrate that deletion of selenoprotein P raises urinary excretion of selenium. When urinary small-molecule (75)Se was injected intravenously into mice, over 90% of the (75)Se appeared in the urine within 24 h, regardless of selenium status. This shows that urinary selenium is dedicated to excretion and not to utilization by tissues. Our results indicate that deletion of selenoprotein P leads to increased urinary selenium excretion. We propose that the absence of selenoprotein P synthesis in the liver makes more selenium available for urinary metabolite synthesis, increasing loss of selenium from the organism and causing the decrease in whole-body selenium and some of the decreases observed in tissues of Sepp1(-/-) mice.  相似文献   

4.
Deletion of selenoprotein P alters distribution of selenium in the mouse   总被引:15,自引:0,他引:15  
Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.  相似文献   

5.

Background

Selenium is an essential trace element and is suggested to play a role in the etiology of a number of chronic diseases. Genetic variation in genes encoding selenoproteins, such as selenoprotein P and the glutathione peroxidases, may affect selenium status and, thus, individual susceptibility to some chronic diseases. In the present study, we aimed to (1) investigate the effect of mussel and fish intake on glutathione peroxidase enzyme activity and (2) examine whether single nucleotide polymorphisms in the GPX1, GPX4, and SELENOP genes modify the effect of mussel and fish intake for 26 weeks on whole blood selenium, plasma selenoprotein P concentrations, and erythrocyte GPX enzyme activity in a randomized intervention trial in Denmark.

Results

CC homozygotes of the SELENOP/rs3877899 polymorphism who consumed 1000 g fish and mussels per week for 26 consecutive weeks had higher levels of both selenoprotein P (difference between means ??4.68 ng/mL (95% CI ??8.49, ??0.871)) and whole blood selenium (difference between means ??5.76 (95% CI ??12.5, 1.01)) compared to fish and mussel consuming T-allele carriers although the effect in whole blood selenium concentration was not statistically significant.

Conclusions

Our study indicates that genetically determined variation in SELENOP leads to different responses in expression of selenoproteins following consumption of selenium-rich foods. This study also emphasizes the importance of taking individual aspects such as genotypes into consideration when assessing risk in public health recommendations.
  相似文献   

6.
Selenoprotein P (Sepp1) has two domains with respect to selenium content: the N-terminal, selenium-poor domain and the C-terminal, selenium-rich domain. To assess domain function, mice with deletion of the C-terminal domain have been produced and compared with Sepp1-/- and Sepp1+/+ mice. All mice studied were males fed a semipurified diet with defined selenium content. The Sepp1 protein in the plasma of mice with the C-terminal domain deleted was determined by mass spectrometry to terminate after serine 239 and thus was designated Sepp1Delta240-361. Plasma Sepp1 and selenium concentrations as well as glutathione peroxidase activity were determined in the three types of mice. Glutathione peroxidase and Sepp1Delta240-361 accounted for over 90% of the selenium in the plasma of Sepp1Delta240-361 mice. Calculations using results from Sepp1+/+ mice revealed that Sepp1, with a potential for containing 10 selenocysteine residues, contained an average of 5 selenium atoms per molecule, indicating that shortened and/or selenium-depleted forms of the protein were present in these wild-type mice. Sepp1Delta240-361 mice had low brain and testis selenium concentrations that were similar to those in Sepp1-/- mice but they better maintained their whole body selenium. Sepp1Delta240-361 mice had depressed fertility, even when they were fed a high selenium diet, and their spermatozoa were defective and morphologically indistinguishable from those of selenium-deficient mice. Neurological dysfunction and death occurred when Sepp1Delta240-361 mice were fed selenium-deficient diet. These phenotypes were similar to those of Sepp1-/- mice but had later onset or were less severe. The results of this study demonstrate that the C terminus of Sepp1 is critical for the maintenance of selenium in brain and testis but not for the maintenance of whole body selenium.  相似文献   

7.
Selenium deficiency causes a fall in the concentrations of selenoproteins but selenoprotein P and type I iodothyronine 5'-deiodinase (5'-deiodinase) are more resistant to this effect than is glutathione peroxidase. To investigate the differential regulation of these selenoproteins, a selenium-deficient diet was fed to weanling rats for 14.5 weeks and their hepatic mRNAs were measured by Northern analysis. Levels of all 3 mRNAs fell progressively with time. Selenoprotein P and 5'-deiodinase mRNAs remained higher at all time points relative to control than glutathione peroxidase mRNA. mRNA decreases were mirrored by decreases in glutathione peroxidase activity and selenoprotein P concentration. However, the decreases in the protein levels were greater than the decreases in their mRNAs, suggesting that synthesis of both proteins was limited to a similar extent at the translational level by the availability of selenium. In addition to this apparently unregulated translational effect, these results point to a pretranslational regulation, affecting mRNA levels, which could account for the differential effect of selenium deficiency on glutathione peroxidase and the other selenoproteins. This regulation might serve to direct selenium to selenoprotein P and 5'-deiodinase when limited amounts of the element are available.  相似文献   

8.
Selenium is an essential micronutrient important to human health. The main objective of this study is to describe serum selenium and selenoprotein P status in two samples of the Danish population. In addition, the influence of various factors potentially associated with selenium status was investigated.Blood samples from a total of 817 randomly selected subjects from two cities in Denmark were analyzed. Half of the samples were collected in 1997–1998 and the other half in 2004–2005. Samples from women aged 18–22, 40–45 and 60–65 years, and men aged 60–65 years were selected for this study. All subjects had filled in a food frequency questionnaire (FFQ) and a questionnaire with information about smoking habits, alcohol consumption and exercise habits.Mean serum selenium level was 98.7±19.8 μg/L and median selenoprotein P level was 2.72 (2.18–3.49) mg/L. Serum selenium and selenoprotein P increased with age, and selenoprotein P was higher in men than in women. Serum selenium levels decreased by 5% on average from 1997–98 to 2004–05 (P<0.001), whereas selenoprotein P level increased (P<0.001). The intake of fish correlated weakly with serum selenium level (r=0.14, P<0.001) but not with selenoprotein P level. Smoking status, alcohol intake, exercise habits, BMI and medicine use did not influence selenium status.It is concluded that selenium status in this Danish population is at an acceptable level. No major groups with regard to age, sex or lifestyle factors could be identified as being in risk for selenium deficiency.  相似文献   

9.
Selenoprotein P is a newly characterized selenoprotein. It is the first protein described to contain multiple selenocysteines. It is secreted by the liver into the plasma and turns over rapidly. Its concentration is sensitive to the selenium status of the animal. Its function is unknown.  相似文献   

10.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

11.
Selenium (Se) is incorporated into selenoproteins as the 21st proteinogenic amino acid selenocysteine. Serum Se concentrations decline during critical illness and are indicative of poor prognosis. Serum Se is mainly contained in the hepatically derived selenoprotein P (SePP) which controls the expression of antioxidative selenoproteins. Here, we describe the development of an immunoluminometric sandwich assay that uses two polyclonal sheep antihuman SePP antibodies. After assessing the stability of the analyte, we determined SePP concentrations in samples from healthy individuals and patients with sepsis. The analytical detection limit was 0.016 mg SePP/L serum. The assay was linear on dilution. SePP was stable in serum at room temperature for at least 24 h and resistant to six freeze-thaw cycles. Median SePP concentration in healthy individuals was 3.04 mg SePP/L serum (25th–75th percentiles, 2.6–3.4 mg/L) which corresponded to 98.4 μg Se/L serum. The interlaboratory CV was <20% for SePP values >0.06 mg/L. There was no association with gender, but concentrations differed between young and older individuals. Median SePP concentrations were significantly (P<0.0001) decreased in patients with sepsis (n=60) compared to healthy controls (n=318). Since SePP contains the major fraction of serum Se, we conclude that downregulation of SePP biosynthesis or removal of circulating SePP from blood underlies the negative acute phase response of serum Se in critical illness.  相似文献   

12.
The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes.  相似文献   

13.

Background

Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely.

Scope of review

In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis.

Major conclusions

Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli.

General significance

Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled “Selenium research in biochemistry and biophysics – 200 year anniversary”.  相似文献   

14.
15.
Zhang JL  Li JL  Huang XD  Bo S  Rihua W  Li S  Xu SW 《Biometals》2012,25(2):297-307
Selenium (Se), selenoprotein N (SelN) and selenoprotein W (SelW) play a crucial role in muscle disorders. Se status highly regulates selenoprotein mRNA levels. However, few attempts have been performed on the effect of dietary Se supplementation on muscle SelN and SelW mRNA levels in birds. To investigate the effects of Se on the regulation of SelN and SelW mRNA levels in muscle tissues, one-day-old male chickens were fed either a commercial diet or a Se-supplemented diet containing 1.0, 2.0, 3.0 or 5.0 mg/kg sodium selenite for 90 days. Muscle tissues (breast, flight, thigh, shank and cardiac muscles) were collected and examined for Se content and mRNA levels of SelN and SelW. Moreover, Selenophosphate synthetase-1 (SPS-1) and selenocysteine-synthase (SecS) mRNA levels were analyzed. Significant increases in SelN mRNA levels were obtained in breast, thigh and shank muscles treated with Se, with maximal effects at 3.0 mg Se/kg diet, but 2.0 mg Se/kg diet resulted in peak levels of Sel N mRNA in flight muscles. Changes in SelW mRNA abundance in thigh and shank muscles increased in response to Se supply. After reaching a maximal level, higher Se supplementation led to a reduction in both SelN and SelW mRNAs. However, SelN and SelW mRNA levels displayed a different expression pattern in different skeletal and cardiac muscles. Thus, it suggested that skeletal and cardiac muscles SelN and SelW mRNA levels were highly regulated by Se supplementation and different muscle tissues showed differential sensitivity. Moreover, Se supplementation also regulated the levels of SPS1 and SecS mRNAs. The mRNA levels of SPS1 and SecS were enhanced in the Se supplemented groups. These data indicate that Se regulates the expression of SelN and SelW gene and affect the mRNA levels of SecS and SPS1.  相似文献   

16.
BackgroundSelenium (Se) appears in the selenoproteins in the form of selenocysteine (Sec) and is important for the growth and development of vertebrates. The present study characterized seven selenoproteins, consisting of the GPX1, GPX3, GPX4, SELENOW, SELENOP, TXNRD2 and TXNRD3 cDNAs in various tissues of yellow catfish, explored their regulation to dietary Se addition.Methods3′ and 5′ RACE PCR were used to clone full-length cDNA sequences of seven selenoprotein genes (GPX1, GPX3, GPX4, SELENOW, SELENOP, TXNRD2 and TXNRD3). Their molecular characterizations were analyzed, including conservative motifs and the SECIS elements. The phylogenetic trees were generated through neighbor-joining (NJ) method with MEGA 6.0 with 1000 bootstrap replications. Quantitative real-time PCR was used to explore their mRNA tissue distribution in the heart, anterior intestine, dorsal muscle, head kidney, gill, liver, brain, spleen and mesenteric fat. Yellow catfish (mixed sex) were fed diets with dietary Se contents at 0.03 (low Se), 0.25 (adequate Se) and 6.39 (high Se) mg Se/kg, respectively, for 12 weeks, and their spleen, kidney, testis and brain were used for the determination of the mRNA levels of the seven selenoproteins.ResultsThe seven selenoproteins had similar domains to their corresponding members of other vertebrates. They were widely expressed in nine tissues, including heart, liver, brain, spleen, head kidney, dorsal muscle, mesenteric fat, anterior intestine and gill, but showed tissue-dependent expression patterns. Dietary Se addition affected the expression of the seven genes in spleen, kidney, testis and brain tissues of yellow catfish.ConclusionTaken together, our study demonstrated the characterization, expression and regulation of seven selenoproteins, which increased our understanding of the biological functions of Se and selenoproteins in fish.  相似文献   

17.

Background

Selenoprotein synthesis requires the reinterpretation of a UGA stop codon as one that encodes selenocysteine (Sec), a process that requires a set of dedicated translation factors. Among the mammalian selenoproteins, Selenoprotein P (SELENOP) is unique as it contains a selenocysteine-rich domain that requires multiple Sec incorporation events.

Scope of review

In this review we elaborate on new data and current models that provide insight into how SELENOP is made.

Major conclusions

SELENOP synthesis requires a specific set of factors and conditions.

General significance

As the key protein required for proper selenium distribution, SELENOP stands out as a lynchpin selenoprotein that is essential for male fertility, proper neurologic function and selenium metabolism.  相似文献   

18.
19.
A Ca2+- and phospholipid-dependent protein kinase (protein kinase C) was partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and phenyl-Sepharose. Enzyme activity was characterized with both histone and a 47 kDa platelet protein (P47) as substrates, because the properties of protein kinase C can be modified by the choice of substrate. Both phosphatidylserine and Ca2+ were required for kinase activity. With P47 as substrate, protein kinase C had a Ka for Ca2+ of 5 microM. Addition of diolein to the enzyme assay caused a marked stimulation of activity, especially at low Ca2+ concentrations, but the Ka for Ca2+ was shifted only slightly, to 2.5 microM. With histone as substrate, the enzyme had a very high Ka (greater than 50 microM) for Ca2+, which was substantially decreased to 3 microM-Ca2+ by diolein. A Triton X-100 mixed-micelle preparation of lipids was also utilized to assay protein kinase C with histone as the substrate. Under these conditions kinase activity was almost totally dependent on the presence of diolein; again, diolein caused a large decrease in the Ka for Ca2+, from greater than 100 microM to 2.5 microM. The increased sensitivity of protein kinase C to Ca2+ with P47 rather than histone, and the ability of diacylglycerol to activate protein kinase C without shifting the Ka for Ca2+, when P47 is the substrate, illustrate that the mechanism of protein kinase C activation is influenced by the exogenous substrate used to assay the enzyme.  相似文献   

20.
BackgroundPolycystic ovary syndrome (PCOS) is associated with an increased risk of cardiovascular diseases (CVD). Accumulating evidence has suggested that selenium (Se) is of importance for optimal function of the cardiovascular system. This study aimed to investigate the associations of selenium and selenoprotein P (SePP) with asymmetric dimethylarginine (ADMA) and lipid profile in women with PCOS.MethodsIn this cross-sectional study, 125 females aged 18–45 years diagnosed with PCOS were recruited. An interviewer-administered questionnaire was applied to gather the relevant demographic characteristics, detailed clinical information, and lifestyle habits of participants. Fasting blood samples were obtained to measure biochemical parameters. Serum concentrations of total testosterone, sex hormone-binding globulin (SHBG), ADMA, and lipid profiles as well as anthropometric measurements were assessed across tertiles of serum Se and SePP concentrations.ResultsThere was a positive correlation between serum Se and SePP concentrations (r = 0.434, p < 0.001). Serum Se level was inversely correlated with ADMA (r = −0.21, p = 0.025) and TG (r = −0.17, p = 0.041) concentrations. There were also inverse correlations between SePP and ADMA (r = −0.34, p < 0.001), TG (r = −0.21, p = 0.019), and oxidized low density lipoprotein (ox-LDL) (r = −0.25, p = 0.007) levels. No significant relationship was found between serum Se and SePP concentrations with total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), apolipoprotein-A1 (Apo-A1), apolipoprotein-B (Apo-B100), total testosterone, SHBG, and free androgen index as well as anthropometric parameters (All p > 0.05).ConclusionThe present study found that Se and SePP levels were inversely correlated with ADMA and TG concentrations as well as ox-LDL levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号