首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two isoforms of phospholipase C (PLC)-gamma couple immune recognition receptors to important calcium- and protein kinase C-dependent cellular functions. It has been assumed that PLC-gamma1 and PLC-gamma2 have redundant functions and that the receptors can use whichever PLC-gamma isoform is preferentially expressed in a cell of a given hemopoietic lineage. In this study, we demonstrate that ITAM-containing immune recognition receptors can use either PLC-gamma1 or PLC-gamma2, whereas the novel NK cell-activating receptor NKG2D preferentially couples to PLC-gamma2. Experimental models evaluating signals from either endogenous receptors (FcR vs NKG2D-DAP10) or ectopically expressed chimeric receptors (with ITAM-containing cytoplasmic tails vs DAP10-containing cytoplasmic tails) demonstrate that PLC-gamma1 and PLC-gamma2 both regulate the functions of ITAM-containing receptors, whereas only PLC-gamma2 regulates the function of DAP10-coupled receptors. These data suggest that specific immune recognition receptors can differentially couple to the two isoforms of PLC-gamma. More broadly, these observations reveal a basis for selectively targeting the functions initiated by distinct immune recognition receptors.  相似文献   

2.
IntroductionSeveral cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown.MethodsThis study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis.ResultsWe demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a.ConclusionIn keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells.  相似文献   

3.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

4.
NK cells are large granular lymphocytes capable of killing certain tumor cells and virally infected cells in a non-MHC-restricted manner. NK cells can also effect an antibody dependent cytotoxicity that is triggered by CD16, an FcR for IgG. In NK cells, CD16 is expressed in association with zeta, a signal transducing subunit of the TCR complex. Here we show that, just as T cell activation via the TCR complex results in tyrosine phosphorylation of zeta TCR, NK cell activation via CD16 results in tyrosine phosphorylation of zeta NK. Whereas antibody-dependent cytotoxicity also results in tyrosine phosphorylation of zeta, natural cytotoxicity does not. Our results indicate that zeta functions as a transducing element for antibody dependent, but not antibody independent killing by NK cells. Consequently, NK cells are likely to express at least two distinct receptor complexes capable of triggering cytolytic effector function.  相似文献   

5.
Allergic asthma is dependent on chemokine-mediated Th2 cell migration and Th2 cytokine secretion into the lungs. The inducible T cell tyrosine kinase Itk regulates the production of Th2 cytokines as well as migration in response to chemokine gradients. Mice lacking Itk are resistant to developing allergic asthma. However, the role of kinase activity of Itk in the development of this disease is unclear. In addition, whether distinct Itk-derived signals lead to T cell migration and secretion of Th2 cytokines is also unknown. Using transgenic mice specifically lacking Itk kinase activity, we show that active kinase signaling is required for control of Th2 responses and development of allergic asthma. Moreover, dominant suppression of kinase Itk activity led to normal Th2 responses, but significantly reduced chemokine-mediated migration, resulting in prevention of allergic asthma. These observations indicate that signals required for Th2 responses and migration are differentially sensitive to Itk activity. Manipulation of Itk's activity can thus provide a new strategy to treat allergic asthma by differentially affecting migration of T cells into the lungs, leaving Th2 responses intact.  相似文献   

6.
The CD94/NKG2-A complex is the inhibitory receptor for the nonclassical MHC class I molecule HLA-E on human NK cells. Here we studied the molecular mechanisms underlying the inhibitory activity of CD94/NKG2-A on NK cell functions by analyzing its interference on CD16-initiated signaling pathways involved in the control of cytolytic activity. Both tyrosine phosphorylation and activation of Syk kinase together with tyrosine phosphorylation of CD16 receptor zeta subunit are markedly inhibited by the coengagement of CD94/NKG2-A complex. As a downstream consequence, CD94/NKG2-A cross-linking impairs the CD16-induced activation of extracellular regulated kinases (ERKs), a pathway involved in NK cytotoxic function. The block of ERK activation is exerted at an early, PTK-dependent stage in the events leading to p21ras activation, as the CD16-induced tyrosine phosphorylation of Shc adaptor protein and the formation of Shc/Grb-2 complex are abrogated by CD94/NKG2-A simultaneous engagement. Our observations indicate that CD94/NKG2-A inhibits the CD16-triggered activation of two signaling pathways involved in the cytotoxic activity of NK cells. They thus provide molecular evidence to explain the inhibitory function of CD94/NKG2-A receptor on NK effector functions.  相似文献   

7.
8.
An involvement of innate immunity and of NK cells during the priming of adaptive immune responses has been recently suggested in normal and disease conditions such as HIV infection and acute myelogenous leukemia. The analysis of NK cell-triggering receptor expression has been so far restricted to only NKp46 and NKp30 in Macaca fascicularis. In this study, we extended the molecular and functional characterization to the various NK cell-triggering receptors using PBMC and to the in vitro-derived NK cell populations by cytofluorometry and by cytolytic activity assays. In addition, RT-PCR strategy, cDNA cloning/sequencing, and transient transfections were used to identify and characterize NKp80, NKG2D, CD94/NKG2C, and CD94/NKG2A in M. fascicularis and Macaca mulatta as well as in the signal transducing polypeptide DNAX-activating protein DAP-10. Both M. fascicularis and M. mulatta NK cells express NKp80, NKG2D, and NKG2C molecules, which displayed a high degree of sequence homology with their human counterpart. Analysis of NK cells in simian HIV-infected M. fascicularis revealed reduced surface expression of selected NK cell-triggering receptors associated with a decreased NK cell function only in some animals. Overall surface density of NK cell-triggering receptors on peripheral blood cells and their triggering function on NK cell populations derived in vitro was not decreased compared with uninfected animals. Thus, triggering NK cell receptor monitoring on macaque NK cells is possible and could provide a valuable tool for assessing NK cell function during experimental infections and for exploring possible differences in immune correlates of protection in humans compared with cynomolgus and rhesus macaques undergoing different vaccination strategies.  相似文献   

9.
Syk regulation of phosphoinositide 3-kinase-dependent NK cell function   总被引:4,自引:0,他引:4  
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway controlling NK cytotoxicity, the signaling mechanism by which Syk associates with downstream effectors to drive NK lytic function has not been clearly defined. In NK92 cells, which express DAP12 but little DAP10/NKG2D, we now show that Syk acts upstream of PI3K, subsequently leading to the specific signaling of the PI3K-->Rac1-->PAK1-->mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-->ERK cascade that we earlier described. Tumor cell ligation stimulated DAP12 tyrosine phosphorylation and its association with Syk in NK92 cells; Syk tyrosine phosphorylation and activation were also observed. Inhibition of Syk function by kinase-deficient Syk or piceatannol blocked target cell-induced PI3K, Rac1, PAK1, mitogen-activated protein/ERK kinase, and ERK activation, perforin movement, as well as NK cytotoxicity, indicating that Syk is upstream of all these signaling events. Confirming that Syk does not act downstream of PI3K, constitutively active PI3K reactivated all the downstream effectors as well as NK cytotoxicity suppressed in Syk-impaired NK cells. Our results are the first report documenting the instrumental role of Syk in control of PI3K-dependent natural cytotoxicity.  相似文献   

10.
Diversity of NK cell receptor repertoire in adult and neonatal mice.   总被引:4,自引:0,他引:4  
Murine NK cytotoxicity is regulated by two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2. We developed a single-cell RT-PCR method to analyze expression of all known Ly49 and NKG2A genes in individual NK cells and determined the receptor repertoires of NK cells from adult and neonatal (1-wk-old) C57BL/6 mice. In adult mouse NK cells, up to six different receptors were coexpressed in random combinations. Of 62 NK cells examined, 42 different patterns of receptor expression were observed. Most of them expressed at least one Ly49, whereas NKG2A was detected in 32% of the cells. Over 75% of them expressed Ly49C, I, or NKG2A, which are thought to recognize self-class I MHC (H-2b). Coexpression of multiple Ly49 receptors and NKG2A was stochastic. In contrast, very few neonatal NK cells expressed any Ly49, but almost 60% of them expressed NKG2A. These results demonstrate that adult NK cells are quite heterogeneous and have diverse receptor repertoires. They also suggest that the expression of NKG2A precedes Ly49 expression in NK cell ontogeny, and NKG2A is a major inhibitory receptor in neonatal NK cells.  相似文献   

11.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

12.
Overexpression of the receptor tyrosine kinases HER2 and HER3 is associated with a poor prognosis in several types of cancer. Presently, HER2- as well as HER3-targeted therapies are in clinical practice or evaluated within clinical trials, including treatment with mAbs mediating growth inhibition and/or activation of Ab-induced innate or adaptive cellular immunity. A better understanding of how HER2/HER3 signaling in tumors influences cellular immune mechanisms is therefore warranted. In this study, we demonstrate that HER2/HER3 signaling regulates the expression of MHC class I-related chain A and B (MICA and MICB) in breast cancer cell lines. The MICA and MICB (MICA/B) molecules act as key ligands for the activating receptor NK group 2, member D (NKG2D) and promote NK cell-mediated recognition and cytolysis. Genetic silencing of HER3 but not HER2 downregulated the expression of MICA/B, and HER3 overexpression significantly enhanced MICA expression. Among the major pathways activated by HER2/HER3 signaling, the PI3K/AKT pathway was shown to predominantly regulate MICA/B expression. Treatment with the HER3-specific ligand neuregulin 1β promoted the expression in a process that was antagonized by pharmacological and genetic interference with HER3 but not by the ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related protein kinases inhibitor caffeine. These observations further emphasize that HER2/HER3 signaling directly, and not via genotoxic stress, regulates MICA/B expression. As anticipated, stimulating HER2/HER3 enhanced the NKG2D-MICA/B-dependent NK cell-mediated cytotoxicity. Taken together, we conclude that signaling via the HER2/HER3 pathway in breast carcinoma cell lines may lead to enhanced NKG2D-MICA/B recognition by NK cells and T cells.  相似文献   

13.
Syk and ZAP-70 subserve nonredundant functions in B and T lymphopoiesis. In the absence of Syk, B cell development is blocked, while T cell development is arrested in the absence of ZAP-70. The receptors and the signaling molecules required for differentiation of NK cells are poorly characterized. Here we investigate the role of the Syk protein tyrosine kinase in NK cell differentiation. Hemopoietic chimeras were generated by reconstituting alymphoid (B-, T-, NK-) recombinase-activating gene-2 x common cytokine receptor gamma-chain double-mutant mice with Syk-/- fetal liver cells. The phenotypically mature Syk-/- NK cells that developed in this context were fully competent in natural cytotoxicity and in calibrating functional inhibitory receptors for MHC molecules. Syk-deficient NK cells demonstrated reduced levels of Ab-dependent cellular cytotoxicity. Nevertheless, Syk-/- NK cells could signal through NK1. 1 and 2B4 activating receptors and expressed ZAP-70 protein. We conclude that the Syk protein tyrosine kinase is not essential for murine NK cell development, and that compensatory signaling pathways (including those mediated through ZAP-70) may sustain most NK cell functions in the absence of Syk.  相似文献   

14.
Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC). (51)Cr release and Ab blocking assays were performed using freshly isolated, IL-2-activated polyclonal NK cell populations as well as a panel of NK clones. Freshly isolated NK cells are NKp44 negative and lysed pEC exclusively in an NKG2D-dependent fashion. In contrast, the lysis of pEC mediated by activated human NK cells depended on both NKp44 and NKG2D, since a complete protection of pEC was achieved only by simultaneous blocking of these activating NK receptors. Using a panel of NK clones, a highly significant correlation between anti-pig NK cytotoxicity and NKp44 expression levels was revealed. Other triggering receptors such as NKp30 and NKp46 were not involved in xenogeneic NK cytotoxicity. Finally, Ab-dependent cell-mediated cytotoxicity of pEC mediated by human NK cells in the presence of xenoreactive Ab was not affected by blocking of activating NK receptors. In conclusion, strategies aimed to inhibit interactions between NKp44 and NKG2D on human NK cells and so far unknown ligands on pEC may prevent direct NK responses against xenografts but not xenogeneic Ab-dependent cell-mediated cytotoxicity.  相似文献   

15.
Activating receptors such as NKG2D and Ly49D mediate a multitude of effector functions including cytotoxicity and cytokine generation in NK cells. However, specific signaling events that are responsible for the divergence of distinct effector functions have yet to be determined. In this study, we show that lack of caspase recruitment domain-containing protein Bcl10 significantly affected receptor-mediated cytokine and chemokine generation, but not cytotoxicity against tumor cells representing "missing-self" or "induced-self." Lack of Bcl10 completely abrogated the generation of GM-CSF and chemokines and it significantly reduced the generation of IFN-gamma (>75%) in NK cells. Commitment, development, and terminal maturation of NK cells were largely unaffected in the absence of Bcl10. Although IL-2-activated NK cells could mediate cytotoxicity to the full extent, the ability of the freshly isolated NK cells to mediate cytotoxicity was somewhat reduced. Therefore, we conclude that the Carma1-Bcl10-Malt1 signaling axis is critical for cytokine and chemokine generation, although it is dispensable for cytotoxic granule release depending on the activation state of NK cells. These results indicate that Bcl10 represents an exclusive "molecular switch" that links the upstream receptor-mediated signaling to cytokine and chemokine generations.  相似文献   

16.
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells.  相似文献   

17.
Song H  Hur DY  Kim KE  Park H  Kim T  Kim CW  Bang S  Cho DH 《Cellular immunology》2006,242(1):39-45
TGF-beta is known to play a major role for the reduced NKG2D expression seen in cancer patients. However, the mechanisms for reduced TGF-beta-induced down-regulation of NKG2D are unclear. In this study, we observed that IL-2/IL-18 increased the NKG2D expression in the TGF-beta treated NK cell line in a dose-dependent manner. Incubation with the JNK inhibitor SP600125 inhibited the NKG2D expression induced by IL-2/IL-18 in the TGF-beta treated human NK cell line. Moreover, the NK cytotoxicity assay showed that the reduced NK cytotoxicity by TGF-beta was recovered by IL-2/IL-18 treatment. The results indicate that IL-2/IL-18 strongly prevented the TGF-beta-induced NKG2D down-regulation in NK cells via the JNK pathway. Taken together, the protected expression of NKG2D by IL-2/IL-18 provides insight into the mechanism of NKG2D regulation and it also supplied useful information for creating a novel therapeutic approach to treat TGF-beta-secreting cancer cells.  相似文献   

18.
The Tec family tyrosine kinase, Itk has been implicated in T cell antigen receptor (TCR) signaling, yet little is known about Itk regulation. Here, we investigate the role of the tyrosine kinase ZAP-70 in regulating Itk. Whereas Itk was activated in Jurkat T cells in response to CD3 cross-linking, Itk activation was defective in the ZAP-70-deficient P116 Jurkat T cell line. Itk responsiveness to TCR engagement was restored in P116 cells stably transfected with ZAP-70 cDNA. ZAP-70 itself could not directly phosphorylate the Itk kinase domain, indicating an indirect regulation of Itk activity. No role was found for ZAP-70 in regulating Itk recruitment to the plasma membrane, an event that has been suggested to be rate-limiting for the activation of Tec family kinases. Indeed, Itk was found to be constitutively targeted to the membrane fraction in both Jurkat and P116 cells. Lat, a prominent in vivo substrate of ZAP-70 that mediates assembly of multimolecular signaling complexes at the plasma membrane of T cells was also found to be required for TCR-stimulated Itk activation. Itk could not be activated by CD3 cross-linking in a Lat-negative cell line, unless Lat expression was restored. Lat and Itk were observed to co-associate in response to CD3 cross-linking in Jurkat T cells, but not in P116 T cells. The Lat-Itk association correlated with Lat tyrosine phosphorylation, which was deficient in the P116 T cells. These data suggest that ZAP-70 and Lat play important, probably sequential, roles in regulating the activation of Itk following TCR engagement.  相似文献   

19.
Inhibitory receptors expressed on NK cells recognize MHC class I molecules and transduce negative signals to prevent the lysis of healthy autologous cells. The lectin-like CD94/NKG2 heterodimer has been studied extensively as a human inhibitory receptor. In contrast, in mice, another lectin-like receptor, Ly-49, was the only known inhibitory receptor until the recent discovery of CD94/NKG2 homologues in mice. Here we describe the expression and function of mouse CD94 analyzed by a newly established mAb. CD94 was detected on essentially all NK and NK T cells as well as small fractions of T cells in all mouse strains tested. Two distinct populations were identified among NK and NK T cells, CD94(bright) and CD94(dull) cells, independent of Ly-49 expression. The anti-CD94 mAb completely abrogated the inhibition of target killing mediated by NK recognition of Qa-1/Qdm peptide on target cells. Importantly, CD94(bright) but not CD94(dull) cells were found to be functional in the Qa-1/Qdm-mediated inhibition. In the presence of the mAb, activated NK cells showed substantial cytotoxicity against autologous target cells as well as enhanced cytotoxicity against allogeneic and "missing self" target cells. These results suggest that mouse CD94 participates in the protection of self cells from NK cytotoxicity through the Qa-1 recognition, independent of inhibitory receptors for classical MHC class I such as Ly-49.  相似文献   

20.
NK cells can mediate either FcR-dependent cytotoxicity against antibody-coated target cells or direct cytotoxicity against a variety of tumor cells. We used homogeneous, cloned populations of CD16+/CD3- human NK cells to characterize and compare the transmembrane signaling mechanisms used during these alternative forms of cytotoxicity. Cross-linkage of NK cell FcR with anti-FcR (anti-CD16) mAb or direct binding to NK-sensitive tumor targets resulted in a rapid release of inositol phosphates and increases in [Ca2+]i. The receptor-dependent [Ca2+]i increase (as monitored in indo-1 loaded NK cells by flow cytometry) consisted of an initial release of calcium from intracellular stores, followed by a sustained influx of calcium across the plasma membrane. To assess the potential regulatory feedback role of protein kinase C (PKC) activation in these proximal signaling events, NK cells were pretreated with either PKC-activating phorbol esters, nonactivating phorbol ester homologs, or synthetic diacylglycerols. Brief pretreatment with activating phorbol esters rapidly inhibited, in a concentration-dependent manner, both phosphoinositide hydrolysis and increases in [Ca2+]i induced by FcR ligation, whereas pretreatment with an inactive phorbol ester had no effect. This acute inhibitory effect was not explained by FcR down-regulation, which occurred with more prolonged exposure to phorbol esters. In contrast, the phosphoinositide turnover and [Ca2+]i increase in NK cells stimulated with NK-sensitive tumor targets were not affected by prior exposure to PKC-activating phorbol esters. This differential regulatory effect of phorbol ester on proximal signaling was paralleled by a corresponding effect on cytotoxicity, i.e., phorbol ester-induced activation of PKC inhibited FcR-dependent cytotoxicity, but did not alter direct cytotoxicity against NK-sensitive tumor cells. These results indicate that PKC activation can differentially regulate alternative forms of NK cell-mediated cytotoxicity by rapidly and specifically desensitizing the FcR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号