首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to characterize in detail the secondary flow velocity patterns in an in vitro model of a human (adult) pulmonary artery with varying degrees of valvular pulmonic stenosis. A two-dimensional laser Doppler anemometer (LDA) system was used to map the flow fields in the main (MPA), left (LPA), and right (RPA) branches of the pulmonary artery model. The study was conducted in the Georgia Tech right heart pulse duplicator system. A pair of counter-rotating secondary flows were observed in each daughter branch in which the fluid moved outwardly along the side walls and then circled back inwardly toward the center of the vessel. For the case of the "normal" valve, the two counter-rotating secondary flows were symmetric about the centerline. The strength of secondary flows in the RPA was much stronger than in the LPA. However, as the pulmonic valve became more stenotic, the two counter-rotating secondary flows in both the LPA and RPA were no longer symmetric. In addition, the strength of secondary flows in both daughter branches increased with increasing degree of valvular stenosis. The increment in the LPA was, however, greater than in the RPA. The study demonstrates the importance of analyzing complex biological flows from a three-dimensional viewpoint.  相似文献   

2.
Velocity and flow visualization studies were conducted in an adult size pulmonary artery model with varying degrees of valvular stenosis, using a two dimensional laser Doppler anemometer system. Velocity measurements in the main, left and right branches of the pulmonary artery revealed that as the degree of pulmonic stenosis increased, the jet type flow created by the valve hit the distal wall of the LPA farther downstream from the junction of the bifurcation. This in turn led to higher levels of turbulent and disturbed flow, and larger secondary flow motion in the LPA compared to the RPA. The high levels of turbulence measured in the main and left pulmonary arteries with the stenotic valves, could lead to the clinically observed phenomenon of post stenotic dilatation in the MPA extending into the LPA.  相似文献   

3.
The study was to investigate the effects of varying degrees of valvular stenosis on the hemodynamics of the main (MPA), left (LPA), and right (RPA) pulmonary arteries. Particle flow visualization was used to examine the flow patterns in a series of pulmonary artery models manufactured out of glass. These glass models were made based on the geometry of the porcine pulmonary arteries with dilatation in the MPA and LPA. Also, detailed pressure mappings in the models were conducted using a side-hole catheter. As the valve became stenotic, a jet-like flow was observed in the MPA. A higher degree of valvular stenosis corresponded to a narrower jet. This jet-like flow was noted to deflect away from the centerline and impinge on the roof of the dilated MPA. Additionally, a notable pressure gradient across the deflected jet-like flow in the direction of its radius of curvature was seen. Moreover, secondary flows started to appear in the dilated MPA. This suggested that the change in geometry in the MPA, due to its dilatation, had a marked effect on the pulmonary artery hemodynamics. In the LPA and RPA, the strengths of the secondary flows increased as the valve became more stenotic. The flow patterns observed in the LPA appeared to be more disturbed than in the RPA, due to the poststenotic, dilatation present in the LPA. Pressure recovery along the axial direction in the MPA was observed for all the stenotic valves studied. As the degree of valvular stenosis increased, the transvalvular energy loss increased. Moreover, it was observed that the energy loss decreased progressively as the flow traveled downstream. This tendency was consistent with the phenomenon of pressure recovery observed in the pressure measurement. The study demonstrates the importance of analyzing biological flows from a three-dimensional viewpoint.  相似文献   

4.
In-vitro pulsatile flow visualization studies were conducted in an adult-sized pulmonary artery model to observe the effects of valvular pulmonic stenosis on the flow fields of the main, left and right pulmonary arteries. The flow patterns revealed that as the degree of stenosis increased, the jet-type flow created by the valve became narrower, and it impinged on the far (distal) wall of the left pulmonary artery further downstream from the junction of the bifurcation. This in turn led to larger regions of disturbed turbulent flow, as well as helical-type secondary flow motions in the left pulmonary artery, compared to the right pulmonary artery. The flow field in the main pulmonary artery also became more disturbed and turbulent, especially during peak systole and the deceleration phase. The flow visualization observations have been valuable in helping to conduct further quantitative studies such as pressure and velocity field mapping. Such studies are important to understanding the fluid mechanics characteristics of the main pulmonary artery and its two major branches.  相似文献   

5.
Pulmonary regurgitation is a very common phenomenon in pulmonary arteries after repair of patients of Tetralogy of Fallot (TOF) which is the most common complex congenital heart diseases. The aim of this study is to use numerical approaches to simulate flow variations in pulmonary artery after repair of patients of TOF. We analyze the flow patterns in an in-vitro bifurcation pulmonary artery and consider effects of various regurgitation fractions (RF or b/f) in left pulmonary artery (LPA) and right pulmonary artery (RPA). We not only observe the variation of flow patterns, but also analyze the results of b/f and net volumetric flow rates in LPA and RPA. In general, the b/f of LPA is higher than RPA in the measured data provided by phase-contrast magnetic resonance imaging (PC-MRI). We validate the result using numerical approaches to analyze the flow patterns in pulmonary artery in this study. The results will be useful for medical doctors when they perform operations for TOF patients.  相似文献   

6.
7.
Diagnostic testing in patients with congenital heart disease is usually performed supine and at rest, conditions not representative of their typical hemodynamics. Upright exercise measurements of blood flow may prove valuable in the assessment of these patients, but data in normal subjects are first required. With the use of a 0.5-T open magnet, a magnetic resonance-compatible exercise cycle, and cine phase-contrast techniques, time-dependent blood flow velocities were measured in the right (RPA), left (LPA), and main (MPA) pulmonary arteries and superior (SVC) and inferior (IVC) vena cavae of 10 healthy 10- to 14-yr-old subjects. Measurements were made at seated rest and during upright cycling exercise (150% resting heart rate). Mean blood flow (l/min) and reverse flow index were computed from the velocity data. With exercise, RPA and LPA mean flow increased 2.0 +/- 0.5 to 3.7 +/- 0.7 (P < 0.05) and 1.6 +/- 0.4 to 2.9 +/- 0.8 (P < 0.05), respectively. Pulmonary reverse flow index (rest vs. exercise) decreased with exercise as follows: MPA: 0.014 +/- 0.012 vs. 0.006 +/- 0.006 [P = not significant (NS)], RPA: 0.005 +/- 0.004 vs. 0.000 +/- 0.000 (P < 0.05), and LPA: 0.041 +/- 0.019 vs. 0.014 +/- 0.016 (P < 0.05). SVC and IVC flow increased from 1.5 +/- 0.2 to 1.9 +/- 0.6 (P = NS) and 1.6 +/- 0.4 to 4.9 +/- 1.3 (P < 0.05), respectively. A 56/44% RPA/LPA flow distribution at both rest and during exercise suggests blood flow distribution is dominated by distal pulmonary resistance. Reverse flow in the MPA appears to originate solely from the LPA while the RPA is in relative isolation. During seated rest, the SVC-to-IVC venous return ratio is 50/50%. With light/moderate cycling exercise, IVC flow increases by threefold, whereas SVC remains essentially constant.  相似文献   

8.
Malformations of the pulmonary arteries can increase right heart workload and result in morbidity, heart failure, and death. With the increased use of murine models to study these malformations, there is a pressing need for an accurate and noninvasive experimental technique that is capable of characterizing pulmonary arterial hemodynamics in these animals. We describe the growth trends of pulmonary arteries in 13 male Sprague-Dawley rats at 20, 36, 52, 100, and 160 days of age with the introduction of phase-contrast MRI as such a technique. PCMRI results correlated closely with cardiac output measurements by ultrasound echocardiography and with fluorescent microspheres in right-left lung flow split (flow partition). Mean flow, average cross-sectional area, distensibility, and shear rates for the right and left pulmonary arteries (RPA and LPA) were calculated. The RPA was larger and received more flow at all times than the LPA (P < 0.0001). Right-left flow split did not change significantly with age, and arterial distensibility was not significantly different between RPA and LPA, except at 160 days (P < 0.01). Shear rates were much higher for the LPA than the RPA (P < 0.0001) throughout development. The RPA and LPA showed different structure-function relationships but obeyed similar allometric scaling laws, with scaling exponents comparable to those of the main pulmonary artery. This study is the first to quantitatively describe changes in RPA and LPA flows and sizes with development and to apply phase-contrast MRI techniques to pulmonary arteries in rats.  相似文献   

9.
Optimal hemodynamics in aorta-pulmonary shunt reconstruction is essential for improved post-operative recovery of the newborn congenital heart disease patient. However, prior to in vivo execution, the prediction of post-operative hemodynamics is extremely challenging due to the interplay of multiple confounding physiological factors. It is hypothesized that the post-operative performance of the surgical shunt can be predicted through computational blood flow simulations that consider patient size, shunt configuration, cardiac output and the complex three-dimensional disease anatomy. Utilizing only the routine patient-specific pre-surgery clinical data sets, we demonstrated an intelligent decision-making process for a real patient having pulmonary artery atresia and ventricular septal defect. For this patient, a total of 12 customized candidate shunt configurations are contemplated and reconstructed virtually using a sketch-based computer-aided anatomical editing tool. Candidate shunt configurations are evaluated based on the parameters that are computed from the flow simulations, which include 3D flow complexity, outlet flow splits, shunt patency, coronary perfusion and energy loss. Our results showed that the modified Blalock-Taussig (mBT) shunt has 12% higher right pulmonary artery (RPA) and 40% lower left pulmonary artery (LPA) flow compared to the central shunt configuration. Also, the RPA flow regime is distinct from the LPA, creating an uneven flow split at the pulmonary arteries. For all three shunt sizes, right mBT innominate and central configurations cause higher pulmonary artery (PA) flow and lower coronary artery pressure than right and left mBT subclavian configurations. While there is a trade-off between energy loss, flow split and coronary artery pressure, overall, the mBT shunts provide sufficient PA perfusion with higher coronary artery pressures and could be preferred for similar patients having PA overflow risk. Central shunts would be preferred otherwise particularly for cases with very low PA overflow risk.  相似文献   

10.
Magnetic resonance (MR) phase mapping was used to noninvasively assess both blood flow and cross-sectional area (CSA) in the main pulmonary artery (MPA) of 12 healthy volunteers. Flow and CSA patterns exhibited two positive peaks: high systolic and small diastolic. This finding can be explained using a simple "distributed" theoretical model that takes into account the role of a reflected pressure wave from pulmonary vascular impedance in generating a diastolic flow. The mean reflection coefficient of pressure wave, MPA input impedance, and pulmonary vascular impedance were assessed. We verified, in this series, that pressure wave velocity appears to be age-dependent. MR phase mapping has been used to observe the tuning (resonance) of the right cardiovascular system at rest under physiological conditions. MR phase mapping could be used to assess pathological modifications of the tuning that occurs in cases of pulmonary arterial hypertension.  相似文献   

11.
Velocity fields have been measured in models simulating arterial stenoses for continuous and revolution flows. A pulsed Doppler velocimeter allows for velocity readings in the entire tube and in the wall area. Streamlines are determined by numerical solving of the system of equations defining the current function. Velocity profiles and streamlines are presented and discussed either for steady or for unsteady flows, with different Reynolds numbers and variable degrees of stenosis. There is, in the wall area, a recirculating zone made of a well-defined rouleau. Its length varies increasingly according to the increasing severity of the stenosis. The stability of axial flow depends on the input profile, the degree of stenosis and the Reynolds number. Plotting streamlines allows to describe accurately the flow; its quantitative aspect offers advantages with respect to conventional visualization mode.  相似文献   

12.
This report describes the cases of three mentally and physically well-developed siblings, 12, 10, and 8 years of age, with varying degrees of isolated valvular pulmonic stenosis not related to age. The severest lesion occurred in the middle patient and was associated with a right-to-left shunt through a patent foramen ovale. The three children had no other siblings, and there was no history of congenital heart disease among close relatives. These cases support the conclusion that genetic factors play a significant role in the development of certain congenital cardiac disorders.  相似文献   

13.
The physiological basis of a characteristically low blood flow to the fetal lungs is incompletely understood. To determine the potential role of pulmonary vascular interaction in this phenomenon, simultaneous wave intensity analysis (WIA) was performed in the pulmonary trunk (PT) and left pulmonary artery (LPA) of 10 anesthetized late-gestation fetal sheep instrumented with PT and LPA micromanometer catheters to measure pressure (P) and transit-time flow probes to obtain blood velocity (U). Studies were performed at rest and during brief complete occlusion of the ductus arteriosus to augment pulmonary vasoconstriction (n = 4) or main pulmonary artery to abolish wave transmission from the lungs (n = 3). Wave intensity (dI(W)) was calculated as the product of the P and U rates of change. Forward and backward components of dI(W) were determined after calculation of wave speed. PT and LPA WIA displayed an early systolic forward compression wave (FCW(is)) increasing P and U, and a late systolic forward expansion wave decreasing P and U. However, a marked midsystolic fall in LPA U to near-zero was related to an extremely prominent midsystolic backward compression wave (BCW(ms)) that arose approximately 5 cm distal to the LPA, was threefold larger than the PT BCW(ms) (P < 0.001), of similar size to FCW(is) at rest (P > 0.6), larger than FCW(is) following ductal occlusion (P < 0.05) and abolished after main pulmonary artery occlusion. These findings suggest that the absence of pulmonary arterial midsystolic forward flow which accompanies a low fetal lung blood flow is due to a BCW(ms) generated in part by cyclical vasoconstriction within the pulmonary microcirculation.  相似文献   

14.
We describe a magnetic resonance (MR) imaging method that emphasizes pressure wave velocity to noninvasively assess pulmonary arterial hypertension. Both the blood flow and the corresponding vessel cross-sectional area (CSA) were measured by MR phase mapping in the main pulmonary artery (MPA) in 15 patients. MPA pressures were also measured, in the same patients, by right-side heart catheterization. Two significant relationships were established: 1) between the pressure wave velocity in the MPA and the mean pressure in the MPA (Ppa) writing pressure wave velocity = 9.25 Ppa - 202.51 (r = 0.82) and 2) between the ratio of pressure wave velocity to the systolic blood velocity peak in the MPA (R) and the mean pressure in the MPA writing R = 0.68 Ppa - 4.33 (r = 0.89). Using these relationships, we estimated two pressure values to frame the actual Ppa value in each patient from the present series with a reasonable reliability percentage (87%).  相似文献   

15.
OBJECTIVE--To improve the rate of prenatal detection of cardiac malformations in a low risk population. DESIGN--Comparison of extended fetal echocardiography with the standard four chamber view in detecting abnormalities. Extended echocardiography comprised the four chamber view and visualisation of the left ventricular outflow tract, the right ventricular outflow tract, and the main pulmonary artery and its branches. In cases with abnormal results complete echocardiographic studies were performed by a paediatric cardiologist using M mode, Doppler, and colour flow mapping techniques. SETTING--Obstetric ultrasonographic unit at Shaare-Zedek Medical Centre, Jerusalem. SUBJECTS--5400 fetuses in low risk pregnancies between 18 and 24 weeks'' gestation (mean 21 weeks); 53 were lost to follow up. MAIN OUTCOME MEASURES--Detection of abnormality before and after birth. RESULTS--During the study 23 infants (0.4%) were born with cardiac abnormalities, 21 of whom had major structural and functional heart disease. 18 fetuses had heart disease diagnosed prenatally, 11 by the four chamber view alone (sensitivity 48%) and a further seven by extended echocardiography (sensitivity 78%). Five fetal cardiac defects were missed prenatally (false negative rate 22%). These included coarctation of aorta, persistent truncus arteriosus, tetralogy of Fallot, ventricular septal defect, and pulmonic stenosis. Only one false positive diagnosis (coarctation of aorta) was made (specificity 99.9%, false positive rate 0.1%). The abnormality was correctly identified in 17 out of 18 cases. CONCLUSIONS--The extended fetal heart examination detected 86% (18/21) of major abnormalities in a low risk population. The examination should be incorporated into routine prenatal ultrasonographic investigations.  相似文献   

16.
A 59-year-old asymptomatic male was referred to our hospital for evaluation 44 years after surgical correction of a Fallot’s tetralogy. Transthoracic echocardiography showed a good surgical result with only a mild subvalvular pulmonary stenosis and mild pulmonary regurgitation. However, in the parasternal short axis a diastolic colour Doppler flow was seen in the right ventricular outflow tract with a maximum velocity over 4 m/s (figure 1). Pulmonary regurgitation seemed very unlikely because of the high velocity in the absence of elevated pulmonary artery pressure. Because a fistula was suspected, a multislice computer tomography scan was performed.  相似文献   

17.
A low relative area change (RAC) of the proximal pulmonary artery (PA) over the cardiac cycle is a good predictor of mortality from right ventricular failure in patients with pulmonary hypertension (PH). The relationship between RAC and local mechanical properties of arteries, which are known to stiffen in acute and chronic PH, is not clear, however. In this study, we estimated elastic moduli of three PAs (MPA, LPA and RPA: main, left and right PAs) at the physiological state using mechanical testing data and correlated these estimated elastic moduli to RAC measured in vivo with both phase-contrast magnetic resonance imaging (PC-MRI) and M-mode echocardiography (on RPA only). We did so using data from a canine model of acute PH due to embolization to assess the sensitivity of RAC to changes in elastic modulus in the absence of chronic PH-induced arterial remodeling. We found that elastic modulus increased with embolization-induced PH, presumably a consequence of increased collagen engagement, which corresponds well to decreased RAC. Furthermore, RAC was inversely related to elastic modulus. Finally, we found MRI and echocardiography yielded comparable estimates of RAC. We conclude that RAC of proximal PAs can be obtained from either MRI or echocardiography and a change in RAC indicates a change in elastic modulus of proximal PAs detectable even in the absence of chronic PH-induced arterial remodeling. The correlation between RAC and elastic modulus of proximal PAs may be useful for prognoses and to monitor the effects of therapeutic interventions in patients with PH.  相似文献   

18.
R Maciejewski 《Acta anatomica》1992,145(3):244-247
The studies were carried out on 100 right lungs taken from dead human bodies of both sexes whose age varied from 16 to 81 years. The pulmonary artery and the bronchus were injected with a 65% solution of duracryl and then digested in sulfuric acid. The specimens obtained were then examined to determine the number and dimensions of the branches of the basal portion of the right pulmonary artery (RPA) penetrating into the basal segments of the right lower pulmonary lobe. Their length was 52 mm at the most, and their diameter 14 mm. Three types of ramification of the basal portion of the RPA were distinguished on the basis of the trunks, segmental and subsegmental branches present. In 72% of the cases the branches penetrating into the basal segments showed a tree-like type, in 2% of the cases a bushy-like type and in 26% of the cases a middle type.  相似文献   

19.
Pulsed Doppler velocimetry was used to record a grid of velocity waveforms 0.5 cm downstream of the cephalic mesenteric and left renal branches of the aorta in anesthetized dogs. Aortic velocity contours at different phases of the pulse cycle were developed from the grid of waveforms. Transient flow recirculation occurred in the post-systolic phase of the pulse cycle at the aortic wall opposite the branch artery. There was no recirculation at the systolic peak but there was asymmetry of the velocity profile. In contrast, in the in vivo post-stenotic velocity field recirculation persists throughout most of the cycle. These results compare well with similar results from pulsatile model studies. Spectral width of the Doppler signal was not increased in any of the velocity waveforms immediately downstream of the branches, this suggests that flow is relatively undisturbed in these locations.  相似文献   

20.
Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号