首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 10(5) to 10(6) bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

2.
The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site.  相似文献   

3.
The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site.  相似文献   

4.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and Weissella. Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant’s life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

5.
The diversity and stability of the fecal bacterial microbiota in weaning pigs was studied after introduction of an exogenous Lactobacillus reuteri strain, MM53, using a combination of cultivation and techniques based on genes encoding 16S rRNA (16S rDNA). Piglets (n = 9) were assigned to three treatment groups (control, daily dosed, and 4th-day dosed), and fresh fecal samples were collected daily. Dosed animals received 2.5 × 1010 CFU of antibiotic-resistant L. reuteri MM53 daily or every 4th day. Mean Lactobacillus counts for the three groups ranged from 1 × 109 to 4 × 109 CFU/g of feces. Enumeration of strain L. reuteri MM53 on MRS agar (Difco) plates containing streptomycin and rifampin showed that the introduced strain fluctuated between 8 × 103 and 5 × 106 CFU/g of feces in the two dosed groups. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments, with primers specific for variable regions 1 and 3 (V1 and V3), was used to profile complexity of fecal bacterial populations. Analysis of DGGE banding profiles indicated that each individual maintained a unique fecal bacterial population that was stable over time, suggesting a strong host influence. In addition, individual DGGE patterns could be separated into distinct time-dependent clusters. Primers designed specifically to restrict DGGE analysis to a select group of lactobacilli allowed examination of interspecies relationships and abundance. Based on relative band migration distance and sequence determination, L. reuteri was distinguishable within the V1 region 16S rDNA gene patterns. Daily fluctuations in specific bands within these profiles were observed, which revealed an antagonistic relationship between L. reuteri MM53 (band V1-3) and another indigenous Lactobacillus assemblage (band V1-6).  相似文献   

6.
The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.  相似文献   

7.
Culture-independent 16S rDNA-DGGE fingerprinting and phylogenetic analysis were used to reveal the community structure and diversity of the predominant bacteria associated with the four sponges Stelletta tenui, Halichrondria, Dysidea avara, and Craniella australiensis from the South China Sea for the first time. Sponge total community DNA extracted with a direct grinding disruption based method was used successfully after series dilution for 16S rDNA PCR amplification, which simplifies the current procedure and results in good DGGE banding profiles. 16S rDNA-V3 fragments from 42 individual DGGE bands were sequenced and the detailed corresponding bacteria were found in sponges for the fist time based on BLAST results. The sponge-associated bacteria are sponge host-specific because each of the tested four sponges from the same geographical location has different predominant bacterial diversity. Proteobacteria, e.g. α, β and γ subdivisions, make up the majority of the predominant bacteria in sponges and are perhaps in close symbiotic relationship with sponges. Though similar bacteria with close phylogenetic relationships were found among different sponges, the sponge-associated predominant bacterial community structures differ. Sponge C. australiensis has the greatest bacterial diversity, with the four bacteria phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, followed by the sponge D. avara with the two phyla Proteobacteria and Bacteroidetes, and the sponges S. tenui and Halichrondria with the phylum Proteobacteria. DGGE fingerprint-based analysis should ideally be integrated with band cloning and sequencing, phylogenetic analysis and molecular techniques to obtain precise results in terms of the microbial community and diversity.  相似文献   

8.
The overall complexity of the microbial communities in the gastrointestinal (GI) tracts of mammals has hindered observations of dynamics and interactions of individual bacterial populations. However, such information is crucial for understanding the diverse disease-causing and protective roles that gut microbiota play in their hosts. Here, we determine the spatial distribution, interanimal variation, and persistence of bacteria in the most complex defined-flora (gnotobiotic) model system to date, viz., mice colonized with the eight strains of the altered Schaedler flora (ASF). Quantitative PCR protocols based on the 16S rRNA sequence of each ASF strain were developed and optimized to specifically detect as few as 10 copies of each target. Total numbers of the ASF strains were determined in the different regions of the GI tracts of three C.B-17 SCID mice. Individual strain abundance was dependent on oxygen sensitivity, with microaerotolerant Lactobacillus murinus ASF361 present at 105 to 107 cells/g of tissue in the upper GI tract and obligate anaerobic ASF strains being predominant in the cecal and colonic flora at 108 to 1010 cells/g of tissue. The variation between the three mice was small for most ASF strains, except for Clostridium sp. strain ASF502 and Bacteroides sp. strain ASF519 in the cecum. A comparison of the relative distribution of the ASF strains in feces and the colon indicated large differences, suggesting that fecal bacterial levels may provide a poor approximation of colonic bacterial levels. All ASF strains were detected by PCR in the feces of C57BL/6 restricted flora mice, which had been maintained in an isolator without sterile food, water, or bedding for several generations, providing evidence for the stability of these strains in the face of potential competition by bacteria introduced into the gut.  相似文献   

9.
This study was designed to evaluate the effects of algal and yeast β-glucans on the porcine gastrointestinal microbiota, specifically the community of Lactobacillus, Bifidobacterium and coliforms. A total of 48 pigs were fed four diets over a 28-day period to determine the effect that each had on these communities. The control diet consisted of wheat and soya bean meal. The remaining three diets contained wheat and soya bean meal supplemented with β-glucan at 250 g/tonne from Laminaria digitata, Laminaria hyperborea or Saccharomyces cerevisiae. Faecal samples were collected from animals before feeding each diet and after the feeding period. The animals were slaughtered the following day and samples were collected from the stomach, ileum, caecum, proximal colon and distal colon. Alterations in Lactobacillus in the gastrointestinal tract (GIT) were analysed using denaturing gradient gel electrophoresis (DGGE) profiles generated by group-specific 16S rRNA gene PCR amplicons. Plate count analysis was also performed to quantify total coliforms. DGGE profiles indicated that all β-glucan diets provoked the emergence of a richer community of Lactobacillus. The richest community of lactobacilli emerged after feeding L. digitata (LD β-glucan). Plate count analysis revealed that the L. hyperborea (LH β-glucan) diet had a statistically significant effect on the coliform counts in the proximal colon in comparison with the control diet. β-glucan from L. digitata and S. cerevisiae also generally reduced coliforms but to a lesser extent. Nevertheless, the β-glucan diets did not significantly reduce levels of Lactobacillus or Bifidobacterium. DGGE analysis of GIT samples indicated that the three β-glucan diets generally promoted the establishment of a more varied range of Lactobacillus species in the caecum, proximal and distal colon. The LH β-glucan had the most profound reducing effect on coliform counts when compared with the control diet and diets supplemented with L. digitata and S. cerevisiae β-glucans.  相似文献   

10.
The composition of the fecal microflora of 10 healthy subjects was monitored before (6-month control period), during (6-month test period), and after (3-month posttest period) the administration of a milk product containing Lactobacillus rhamnosus DR20 (daily dose, 1.6 × 109 lactobacilli). Monthly fecal samples were examined by a variety of methods, including bacteriological culture analysis, fluorescent in situ hybridization with group-specific DNA probes, denaturing gradient gel electrophoresis of the V2-V3 region of 16S rRNA genes amplified by PCR, gas-liquid chromatography, and bacterial enzyme activity analysis. The composition of the Lactobacillus population of each subject was analyzed by pulsed-field gel electrophoresis of bacterial DNA digests in order to differentiate between DR20 and other strains present in the samples. Representative isolates of lactobacilli were identified to the species level by sequencing the V2-V3 region of their 16S rRNA genes and comparing the sequences obtained (BLAST search) to sequences in the GenBank database. DR20 was detected in the feces of all of the subjects during the test period, but at different frequencies. The presence of DR20 among the numerically predominant strains was related to the presence or absence of a stable indigenous population of lactobacilli during the control period. Strain DR20 did not persist at levels of >102 cells per g in the feces of most of the subjects after consumption of the product ceased; the only exception was one subject in which this strain was detected for 2 months during the posttest period. We concluded that consumption of the DR20-containing milk product transiently altered the Lactobacillus and enterococcal contents of the feces of the majority of consumers without markedly affecting biochemical or other bacteriological factors.  相似文献   

11.
The development of the lactic acid bacterial community in a commercial malt whisky fermentation occurred in three broad phases. Initially, bacteria were inhibited by strong yeast growth. Fluorescence microscopy and environmental scanning electron microscopy revealed, in this early stage, both cocci and rods that were at least partly derived from the wort and yeast but also stemmed from the distillery plant. Denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA genes and sequence analysis revealed cocci related to Streptococcus thermophilus or Saccharococcus thermophilus, Lactobacillus brevis, and Lactobacillus fermentum. The middle phase began 35 to 40 h after yeast inoculation and was characterized by exponential growth of lactobacilli and residual yeast metabolism. Lactobacillus casei or Lactobacillus paracasei, L. fermentum, and Lactobacillus ferintoshensis were detected in samples of fermenting wort examined by DGGE during this stage. Bacterial growth was accompanied by the accumulation of acetic and lactic acids and the metabolism of residual maltooligosaccharides. By 70 h, two new PCR bands were detected on DGGE gels, and the associated bacteria were largely responsible for the final phase of the fermentation. The bacteria were phylogenetically related to Lactobacillus acidophilus and Lactobacillus delbrueckii, and strains similar to the former had previously been recovered from malt whisky fermentations in Japan. These were probably obligately homofermentative bacteria, required malt wort for growth, and could not be cultured on normal laboratory media, such as MRS. Their metabolism during the last 20 to 30 h of fermentation was associated with yeast death and autolysis and further accumulation of lactate but no additional acetate.  相似文献   

12.
Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger''s strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.  相似文献   

13.
The bacterial communities in the food, intestines, and feces of earthworms were investigated by PCR-denaturing Gradient gel electrophoresis (DGGE). In this study, PCR-DGGE was optimized by testing 6 universal primer sets for microbial 16S rRNA in 6 pure culture strains of intestinal microbes in earthworms. One primer set effectively amplified 16S rRNA from bacterial populations that were found in the food, intestines, and feces of earthworms. Compared with the reference markers from the pure culture strains, the resulting DGGE profiles contained 28 unique DNA fragments. The dominant microorganisms in the food, intestines, and feces of earthworms included Rhodobacterales bacterium, Fusobacteria, Ferrimonas marina, Aeromonas popoffii, and soil bacteria. Other straisn, such as Acinetobacter, Clostridium, and Veillonella, as well as rumen bacteria and uncultured bacteria also were present. These results demonstrated that PCR-DGGE analysis can be used to elucidate bacterial diversity and identify unculturable microorganisms.  相似文献   

14.
The total bacterial community of an experimental slow sand filter (SSF) was analyzed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA gene PCR products. One dominant band had sequence homology to Legionella species, indicating that these bacteria were a large component of the SSF bacterial community. Populations within experimental and commercial SSF units were studied by using Legionella-specific PCR primers, and products were studied by DGGE and quantitative PCR analyses. In the experimental SSF unit, the DGGE profiles for sand column, reservoir, storage tank, and headwater tank samples each contained at least one intense band, indicating that a single Legionella strain was predominant in each sample. Greater numbers of DGGE bands of equal intensity were detected in the outflow water sample. Sequence analysis of these PCR products showed that several Legionella species were present and that the organisms exhibited similarity to strains isolated from environmental and clinical samples. Quantitative PCR analysis of the SSF samples showed that from the headwater sample through the sand column, the number of Legionella cells decreased, resulting in a lower number of cells in the outflow water. In the commercial SSF, legionellae were also detected in the sand column samples. Storing prefilter water or locating SSF units within greenhouses, which are often maintained at temperatures that are higher than the ambient temperature, increases the risk of growth of Legionella and should be avoided. Care should also be taken when used filter sand is handled or replaced, and regular monitoring of outflow water would be useful, especially if the water is used for misting or overhead irrigation.  相似文献   

15.
Using 16S rRNA gene-based approaches, we analyzed the responses of ileal and colonic bacterial communities of weaning piglets to dietary addition of four fermentable carbohydrates (inulin, lactulose, wheat starch, and sugar beet pulp). An enriched diet and a control diet lacking these fermentable carbohydrates were fed to piglets for 4 days (n = 48), and 10 days (n = 48), and the lumen-associated microbiota were compared using denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16S rRNA genes. Bacterial diversities in the ileal and colonic samples were measured by assessing the number of DGGE bands and the Shannon index of diversity. A higher number of DGGE bands in the colon (24.2 ± 5.5) than in the ileum (9.7 ± 4.2) was observed in all samples. In addition, significantly higher diversity, as measured by DGGE fingerprint analysis, was detected in the colonic microbial community of weaning piglets fed the fermentable-carbohydrate-enriched diet for 10 days than in the control. Selected samples from the ileal and colonic lumens were also investigated using fluorescent in situ hybridization (FISH) and cloning and sequencing of the 16S rRNA gene. This revealed a prevalence of Lactobacillus reuteri in the ileum and Lactobacillus amylovorus-like populations in the ileum and the colon in the piglets fed with fermentable carbohydrates. Newly developed oligonucleotide probes targeting these phylotypes allowed their rapid detection and quantification in the ileum and colon by FISH. The results indicate that addition of fermentable carbohydrates supports the growth of specific lactobacilli in the ilea and colons of weaning piglets.  相似文献   

16.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

17.
The present study approaches the characterization of seasonal samples of bioaerosols taken during 2005–2006 in rural, urban, industrial, coastal and residential sites within La Plata area, Buenos Aires, Argentina. Culturable airborne fungal and bacterial communities were collected on DG18 agar and R2 Agar plates respectively, using a single-stage SKC sampling device. Fungal genera were identified based on their micro- and macro-morphological characteristics. Bacterial populations were analyzed by denaturing gradient gel electrophoresis (DGGE) of PCR 16SrDNA bacterial amplification. Geometric mean concentration of bacteria and fungi ranged from 10 to 103 CFU m−3 and were comparable with those from other reports. No differences were observed among sites for fungi and Cladosporium sp. was predominant, with 85.7% of total concentration counts; secondary genera that contributed were Alternaria (6.7%), Penicillium (1.8%), Aspergillus (1.3%), Epicoccum (1.0%) and the group of yeasts (1.9%). The dominance of Cladosporium in all sites suggests that the most abundant fungal aerosol was neither significantly affected nor primarily generated by any anthropogenic area source more than the natural ambience present in the La Plata area. With regard to bacteria, the results showed on several occasions differences in concentration among sites during sampling events, but these differences were not observed when the community structure was analyzed by means of DGGE. Bacterial DGGE banding profiles from all sites revealed the existence of a relatively diversified, culture-based airborne community. Construction of similarity dendrograms exposed a distribution of site samples in which replicates intra-site equalled those encountered among sites, rendering substantial inference of site distinction unfeasible.  相似文献   

18.
AIMS: To study large intestinal mucosal bacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) profiling and sequencing of 16S rRNA gene polymerase chain reaction (PCR) products amplified from DNA extracted from colorectal biopsies taken from healthy individuals. The specific aims were to determine how similar the mucosa-associated bacterial communities are within and between individuals and also to characterize the phylogenetic origin of isolated DGGE bands. METHODS AND RESULTS: Human colorectal biopsies were taken at routine colonoscopy from 33 patients with normal looking mucosa. The DNA was extracted directly from single biopsies and the bacterial 16S rDNA PCR amplified. The PCR products were profiled using DGGE to generate a fingerprint of the dominant members of the bacterial community associated with the biopsy. The reproducibility of this method was high (>98%). Washed and unwashed biopsies gave similar DGGE banding patterns (Median Similarity Coefficient - MSC 96%, InterQuartile Range - IQR 3.0%, n = 5). Adjacent biopsies sampled from the same patient using different forceps gave similar DGGE profiles (MSC 94%, n = 2). Two colorectal biopsies sampled at locations 2-5 cm apart, from each of 18 patients, resulted in very similar profiles (MSC 100%, IQR 2.8%). Biopsies sampled from different locations within the large intestine of the same patient also gave similar DGGE profiles (MSC 98% IQR 3.3%n = 6). Although all patients (n = 33) gave different DGGE profiles, some similarity (c. 34%) was observed between profiles obtained from 15 patients arbitrarily selected. 35 DGGE bands were excised and sequenced. Many were found to be most closely related to uncultured bacterial sequence entries in the Genbank database. Others belonged to typical gut bacterial genera including Bacteroides, Ruminococcus, Faecalibacterium and Clostridium. CONCLUSIONS: Bacterial communities adherent to colorectal mucosa within a normal patient show little variation; in contrast, mucosal bacterial communities sampled from different patients with normal colorectal mucosa show a high degree of variation. SIGNIFICANCE AND IMPACT OF THE STUDY: This research demonstrates that DGGE profiling of 16S rRNA gene PCR products amplified from DNA extracted directly from mucosal samples offers fresh insight into the bacterial communities that are adherent to colorectal mucosa. These findings are important with respect to further studies on the gastrointestinal tract in health and disease.  相似文献   

19.
We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 μm during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm.  相似文献   

20.
The establishment and succession of bacterial communities in infants may have a profound impact in their health, but information about the composition of meconium microbiota and its evolution in hospitalized preterm infants is scarce. In this context, the objective of this work was to characterize the microbiota of meconium and fecal samples obtained during the first 3 weeks of life from 14 donors using culture and molecular techniques, including DGGE and the Human Intestinal Tract Chip (HITChip) analysis of 16S rRNA amplicons. Culture techniques offer a quantification of cultivable bacteria and allow further study of the isolate, while molecular techniques provide deeper information on bacterial diversity. Culture and HITChip results were very similar but the former showed lower sensitivity. Inter-individual differences were detected in the microbiota profiles although the meconium microbiota was peculiar and distinct from that of fecal samples. Bacilli and other Firmicutes were the main bacteria groups detected in meconium while Proteobacteria dominated in the fecal samples. Culture technique showed that Staphylococcus predominated in meconium and that Enterococcus, together with Gram-negative bacteria such as Escherichia coli, Escherichia fergusonii, Klebsiella pneumoniae and Serratia marcescens, was more abundant in fecal samples. In addition, HITChip results showed the prevalence of bacteria related to Lactobacillus plantarum and Streptococcus mitis in meconium samples whereas those related to Enterococcus, Escherichia coli, Klebsiella pneumoniae and Yersinia predominated in the 3rd week feces. This study highlights that spontaneously-released meconium of preterm neonates contains a specific microbiota that differs from that of feces obtained after the first week of life. Our findings indicate that the presence of Serratia was strongly associated with a higher degree of immaturity and other hospital-related parameters, including antibiotherapy and mechanical ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号