首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. We examined spatial distributions and plant sizes along a transect through a natural population of a winter annual, Myosotis micrantha. A size hierarchy existed, as indicated by high values of Gini coefficients of inequality for plant mass and correlated measures. Plants with no immediate conspecific neighbors were larger than plants with one or more near neighbors, suggesting that competition from near neighbors depressed plant size. However, there was strong positive spatial autocorrelation in plant size: large plants were associated with large neighbors and small ones with small neighbors. Plant size was also positively correlated with the combined biomass of near neighbors. The population formed a two-phase mosaic of patches of relatively large plants alternating with patches of smaller plants. The data suggest that individual plants compete with conspecifics, but the effects of competition are symmetrical. The most likely explanations for this spatially structured size hierarchy are variation in plant density, patchy distribution of resources, or a combination of the two.  相似文献   

2.
This study reports on spatial variation of 10 cranial variables in European populations at 3 time periods. Means for these variables, based on 137, 108, and 183 samples from the Early Medieval, Late Medieval, and Recent periods, were subjected to one-dimensional and directional spatial autocorrelation analyses. Significant spatial structure was found for most variables. It becomes more pronounced as time progresses. The spatial patterns are not strongly clinal. Correlograms based on distances computed from all variables are monotonic only to 900, 1,650, and 1,350 km for the three periods. Regional patterns are seen for most variables and become more structured and significant with time. There is little similarity among the correlograms of the variables at any one period and virtually none among periods. Inferences about spatial structure of these populations, based on spatial autocorrelation analysis, suggest a pattern dominated by migration, followed by expansion and admixture rather than selection or chance fluctuations. The patterns of morphometric change seem to reflect the patterns of linguistic change in these areas.  相似文献   

3.
This study aimed to analyze spatial patterns of soil ectomycorrhizal fungal (EMF) communities at the local scale in a subtropical pine-oak forest located in the Nearctic-Neotropical transition in central Mexico, to underpin biodiversity conservation strategies in forest fragments of this region. We used a spatially-explicit nested square sampling design with the same sampling representativeness at all scales and replicated three times. We detected 674 EMF OTUs within 19,200 m2 and 65 OTUs on average per sample. Seventy percent of OTUs were detected in only 1–4 samples. Average community similarity was below 5%, showed minor change within 14 and 339 m distance and increased with the spatial grain used to compare the data. We found a high species-area relationship and beta diversity coefficients for soil fungi indicating that, at the local scale, increasing area by a constant factor of four represented an increase in OTU richness by a factor of two.  相似文献   

4.
In Drosophila, like most ectotherms, development at low temperature reduces growth rate but increases final adult size. Cultures were shifted from 25 degrees C to low (16.5 degrees C) or to high (29 degrees C) temperature at regular intervals through larval and pupal stages, and the flies of both sexes showed an increase or decrease, respectively, in the size of thorax, wing and abdominal tergite. Size changes in the wing blade resulted from changes in the size of the epidermal cells (with only a small increase in cell number in males reared at low temperature). The temperature-shifts became less effective as they were made at successively later developmental stages, demonstrating a cumulative effect of temperature on adult size. The thorax and wing develop from the same imaginal disc, with most cell division occurring in larval stages, but they differ in timing of temperature sensitivity, which extends only to pupariation or into the late pupal stage, respectively. Growth of the adult abdomen occurs largely after pupariation but its size is temperature-sensitive through both larval and pupal stages. We discuss growth control in Drosophila and the likely effects of temperature on food assimilation, growth efficiency and allocation of nutrients to the production of different tissues.  相似文献   

5.
Quantitative surveys revealed high diversity (species richness) of sponges (150 species) in the previously little explored Dampier Archipelago, northwestern Australia. Classification analyses disclosed 11 station groups with high internal heterogeneity in species composition, however some spatial patterns were evident. The composition of sponge assemblages varied with environmental factors such as substrate type (coral, igneous rock, limestone rock), aspect (exposed, protected), substrate configuration (limestone platform, dissected reef) and depth. Most of the species (61%) reported from the Dampier Archipelago were rare (found at one or two stations). The number of species found at only one location was high (48%), supporting previous findings that northwestern Australia has high sponge endemism. As a result of all sponge surveys undertaken in the archipelago (qualitative and quantitative, subtidal and intertidal), 275 sponge species have now been reported from the area. This number indicates high species diversity in the region. Estimations of diversity based on non-parametric modelling suggests that there are potentially more species (range 245–346) than presently recorded in the archipelago.  相似文献   

6.
Density-dependent and density-independent processes have been shown to influence the population dynamics of marine invertebrates, especially recruitment. However, their relative importance has not been evaluated in natural populations. High adult densities have been suggested to inhibit recruitment, especially in suspension-feeders which may ingest incoming larvae. Age structure and juvenile abundance were investigated in the bivalve Spisula ovalis in order to evaluate the importance of density dependence in generating spatial patterns. Age structure is readily established in this species owing to annual shell lines. An extensive sample (from about 100 sites a few hundred meters apart over 4 consecutive years) was analyzed in the statistical framework of spatial analyses, avoiding spurious correlations due to non-independence between neighboring sites. The area studied supports about ten annual cohorts, though only a few occur at each site. The overall picture is a mosaic of kilometer-scale patches of contrasted age structures, as revealed by highly significant spatial autocorrelations. To our knowledge, such large-scale spatial patterns in age structure have not previously been described in benthic invertebrates. Strong patterns are detected even for juveniles, and are independent of the adult biomass present before settlement. Therefore, patchy patterns of age structure mainly reflect density-independent effects, such as spatial variations in larval supply, passive transport of juveniles, or predation on recruits. In the absence of detailed spatial analyses, such patterns have been misinterpreted previously as negative effects of adult density on settlement success. Received: 21 November 1996 / Accepted: 20 February 1997  相似文献   

7.
1. Factors such as reproductive fitness, climatic tolerance, predation pressure, energetic requirements and the quality and quantity of food sources all correlate with invertebrate body sizes. 2. This study examines body size variation between an invertebrate community inhabiting five different microhabitats (mature leaves, new leaves, flowers, fruit and suspended dead wood) that differ in quality, quantity, and availability in an Australian tropical rainforest canopy. 3. Mean body size varied significantly between invertebrate and beetle feeding guilds across microhabitats. Phylogenetically independent contrasts revealed that invertebrate taxonomic groups were significantly smaller on flowers than on mature and new leaves. Size differences between microhabitats were most pronounced among herbivorous taxa (Hemiptera, Lepidoptera). In particular, the immature stages or those groups that develop on flowers were significantly smaller on flowers and larger on leaves than expected. Taxonomic groups with many strong flying species, especially those that complete larval development on resources other than flowers, typically showed no differences in body size across microhabitats. 4. There are a number of potential hypotheses for the smaller body sizes of flower visitors, including: (i) differences in the physical sizes of the microhabitats; (ii) variation in time–dependent mortality risks that influence development times; and (iii) differences in the nutritional quality of the microhabitats, which can influence body size via metabolic pathways. 5. The findings of this study do not support hypothesis (i) (with the possible exception of one or two predatory groups). It is suggested that hypotheses (ii (time–dependent mortality factors) and particularly (iii) (nutritional variation) may be the best avenues for future study as the main drivers of body size differences between microhabitats.  相似文献   

8.
9.
The relationship between distribution and abundance of epiphytic lichens on five different substrates (Fagus sylvatica, Pinus nigra, Quercus coccifera, Pinus heldreichii and Quercus pubescens) has been studied. For the first three substrates the above relationship has been studied hierarchically. It was concluded that this relationship is partly represented by the core-satellite distribution. This abundance-distribution pattern could probably be explained by more than one hypothesis and it is probably related with the life strategies of lichen species.  相似文献   

10.
11.
12.
Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb‐weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider''s diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.  相似文献   

13.
Body size is a key feature of organisms and varies continuously because of the effects of natural selection on the size-dependency of resource acquisition and mortality rates. This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large-scale temporal and spatial) perspective. Because of the importance of understanding the proximate determinants of adult size, it commences with a brief summary of the physiological mechanisms underlying adult body size and its variation, based mostly on findings for the model species Drosophila melanogaster and Manduca sexta . Variation in nutrition and temperature have variable effects on critical weight, the interval to cessation of growth (or terminal growth period) and growth rates, so influencing final adult size. Ontogenetic and phylogenetic variation in size, compensatory growth, scaling at the intra- and interspecific levels, sexual size dimorphism, and body size optimisation are then reviewed in light of their influences on individual and species body size frequency distributions. Explicit attention is given to evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place, and to temporal ecological trends such as variation in size with succession and size-selectivity during the invasion process. Large-scale spatial variation in size at the intraspecific, interspecific and assemblage levels is considered, with special attention being given to the mechanisms proposed to underlie clinal variation in adult body size. Finally, areas particularly in need of additional research are identified.  相似文献   

14.
15.
1. The study of the spatial pattern of species abundance is complicated by statistical problems, such as spatial autocorrelation of the abundance data, which lead to the confusion of environmental effects and dispersal. 2. Atlas-derived data for the rook in Scotland are used as a case study to propose an approach for assessing the likely contribution of dispersal and local environmental effects, based on a Bayesian Conditional Autoregressive (CAR) approach. 3. The availability of moist grasslands is a key factor explaining the spatial pattern of abundance. This is influenced by a combination of climatic and soil-related factors. A direct link to soil properties is for the first time reported for the wide-scale distribution of a bird species. In addition, for this species, dispersal seems to contribute significantly to the spatial pattern and produces a smoother than expected decline in abundance at the north-western edge of its distribution range. Areas where dispersal is most likely to be important are highlighted. 4. The approach described can help ecologists make more efficient use of atlas data for the investigation of the structure of species abundance, and can highlight potential sink areas at the landscape and regional scale. 5. Bayesian spatial models can deal with data autocorrelation in atlas-type data, while clearly communicating uncertainty through the estimation of the full posterior probability distribution of all parameters.  相似文献   

16.
Distribution of abundance across the range in eastern North American trees   总被引:2,自引:0,他引:2  
Aim  We analysed spatial datasets of abundance across the entirety, or near entirety, of the geographical ranges of 134 tree species to test macroecological hypotheses concerning the distribution of abundance across geographical ranges.
Location  Our abundance estimates came via the USDA Forest Service Forest Inventory and Analysis Eastwide Database, which contains data for 134 eastern North American tree species.
Methods  We extracted measures of range size and the spatial location of abundance relative to position in the range for each species to test four hypotheses: (a) species occur in low abundance throughout most of their geographical range; (b) there is a positive interspecific relationship between abundance and range size; (c) species are more abundant in the centre of their range; and (d) there is a bimodal distribution of spatial autocorrelation in abundance across a species range.
Results  Our results demonstrate that (a) most species (85%) are abundant somewhere in their geographical range; (b) species achieving relatively high abundance tend to have larger range sizes; (c) the widely held assumption that species exhibit an 'abundant-centre distribution' is not well supported for the majority of species; we suggest 'abundant-core' as a more suitable term; and (d) there is no evidence of a bimodal distribution of spatial autocorrelation in abundance.  
Main Conclusions 

For many tree species, high abundance can be achieved at any position in the range, though suitable sites are found with less frequency towards range edges. Competitive relationships may be involved in the distribution of abundance across tree ranges and species with larger ranges (and possibly broader niches) may be affected more by biotic interactions than smaller ranging species.  相似文献   

17.
Wildová  Radka 《Plant Ecology》2004,174(2):321-338
Studies of spatial patterns in grassland plant communities have focused on above-ground patterns, ignoring the fact that in clonal plant communities, such as those found in grasslands, above-ground spatial structure must reflect below-ground horizontal growth. The present study examines, at both a fine and a coarse spatial scale, relationships between rhizome and ramet distribution. At the coarse scale, the dominance of species differed between above- and below-ground; some species dominated only above- or below-ground, and others dominated in both layers. At the fine scale, a single species' ramet aggregation above-ground significantly differed from its rhizome aggregation below-ground, for many species. Even for a given species, quantitative relationships between above- and below-ground dominance varied among localities. The variation in spatial pattern among species can be explained by attributes of clonal growth form, including rhizome size, rhizome origin and pattern of above-ground ramet aggregation. Using these parameters of clonal growth, four major space occupation patterns were described for mountain grassland species. For species with a high abundance of evenly distributed rhizomes, ramets either i) reflect rhizome distribution, or ii) do not fully reflect rhizome distribution, but rather are spatially aggregated, and rhizomes are typically developed below-ground. For species with a low abundance of rhizomes, ramets either iii) reflect rhizome distribution and rhizomes are typically of above-ground origin, or iv) do not reflect rhizome distribution and are aggregated only at the growing tips of rhizomes. Spatial correlation above-ground among species was the same as below-ground for some pairs of species but was significantly different for other pairs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Research on individual trait variation has gained much attention because of its implication for ecosystem functions and community ecology. The effect of individual variation on population and community abundance (number of individuals) variation remains scarcely tested. Using two established ecological scaling laws (Taylor's law and abundance–size relationship), we derived a new scaling relationship between the individual size variation and spatial variation of abundance. Tested against multi‐plot tree data from Diaoluo Mountain tropical forest in Hainan, China, the new scaling relationship showed that individual size variation reduced the spatial variation of community assemblage abundance, but not of taxon‐specific population abundance. The different responses of community and population to individual variation were reflected by the validity of the abundance–size relationship. We tested and confirmed this scaling framework using two measures of individual tree size: aboveground biomass and diameter at breast height. Using delta method and height‐diameter allometry, we derived the analytic relation of scaling exponents estimated under different individual size measures. In addition, we used multiple regression models to analyze the effect of taxon richness on the relationship between individual size variation and spatial variation of population or community abundance, for taxon‐specific and taxon‐mixed data, respectively. This work offers empirical evidence and a scaling framework for the negative effect of individual trait variation on spatial variation of plant community. It has implications for forest ecosystem and management where the role of individual variation in regulating population or community spatial variation is important but understudied.  相似文献   

19.
Spatial patterns of human gene frequencies in Europe   总被引:13,自引:0,他引:13  
The aims of this study of spatial patterns of human gene frequencies in Europe are twofold. One is to present new methodology developed for the analysis of such data. The other is to report on the diversity of spatial patterns observed in Europe and their interpretation as evidence of population processes. Spatial variation in 59 allele and haplotype frequencies (26 genetic systems) for polymorphisms in blood antigens, enzymes, and proteins is analyzed for an aggregate of 3,384 localities, using homogeneity tests, one-dimensional and directional spatial correlograms, and SYMAP interpolated surfaces. The data matrices are reduced to reveal the principal patterns by clustering techniques. The findings of this study can be summarized as follows: 1) There is significant heterogeneity in allele frequencies among the localities for all but one genetic system. 2) There are significant spatial patterns for most allele frequencies. 3) There is a substantial minority of clinal patterns in these populations. Clinal trends are found more frequently in HLA alleles than for other variables. North-south and northwest-southwest gradients predominate. 4) There is a strong decline in overall genetic similarity with geographic distance for most variables. 5) There are few, if any, appreciable correlations in pairs of allele frequencies over the continent, and there is little interesting correlation structure in the resulting correlation matrix. 6) Few spatial correlograms are markedly similar to each other, yet they form well-defined clusters. Spatial variation patterns, therefore, differ among allele frequencies. Patterns of human gene frequencies in modern Europe are diverse and complex. No single model suffices for interpretation of the observed genetic structure. Some clinal patterns reported here support the Neolithic demic-expansion hypothesis, others suggest latitudinal selection. Most of the clinal patterns are in HLA alleles, but there is also evidence from ABO for east-west migration diffusion. The majority of patterns are patchy, consistent with hypotheses of isolation by distance or of settlement of genetically differing, subsequently expanding ethnic groups. While undoubtedly there has been an ongoing stochastic process of differentiation consistent with the isolation-by-distance model, this has not obscured the directional patterns caused by migration (demic diffusion), and has perhaps only reinforced the contribution from settlement of ethnic units to patterns of genetic variation. However, the impact of the latter is most difficult to discern and requires further methodological developments.  相似文献   

20.
Yom-Tov Y  Geffen E 《Oecologia》2006,148(2):213-218
Latitudinal trends in body size have been explained as a response to temperature- or water-related factors, which are predictors of primary production. We used the first principal component calculated from three body parameters (weight, body length and the greatest length of the skull) of a sample of mammals from Israel and Sinai to determine those species that vary in size geographically, and whether such variation is related to annual rainfall, average minimum January temperature and average maximum August temperature. We used a conservative approach to discern the effects of precipitation and temperature by applying sequential regression. Variable priorities were assigned according to their bivariate correlation with body size, except for rainfall and its interactions that entered into the model last. Eleven species (Acomys cahirinus, Apodemus mystacinus, Canis lupus, Crocidura suaveolens, Gerbillus dasyurus, Hyaena hyaena, Lepus capensis, Meles meles, Meriones tristrami, Rousettus aegyptius and Vulpes vulpes) of the 17 species examined varied in size geographically. In five of them, rainfall was positively related to body size, while in one species it was negatively related to it. Contrary to the prediction of Bergmann’s rule, mean minimum January temperature was positively related to body size in five species and negatively related to body size in two species (C. suaveolens and G. dasyurus). As predicted by Bergmann’s rule, maximum June temperature was negatively related to body size in three species, and positively so in one (L. capensis). Primary production, particularly in desert and semi-desert areas, is determined mainly by precipitation. The above results indicate that, in our sample, primary production has an important effect on body size of several species of mammals. This is evident from the considerable proportion of the variability in body size explained by rain. However, low ambient temperatures may slow down and even inhibit photosynthesis. Hence, the observed positive relationships between average minimum January temperature and body size in four of the six species influenced by rain further support this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号