首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main analgesic effects of the opioid alkaloid morphine are mediated by the mu-opioid receptor. In contrast to endogenous opioid peptides, morphine activates the mu-opioid receptor without causing its rapid endocytosis. Recently, three novel C-terminal splice variants (MOR1C, MOR1D, and MOR1E) of the mouse mu-opioid receptor (MOR1) have been identified. In the present study, we show that these receptors differ substantially in their agonist-selective membrane trafficking. MOR1 and MOR1C stably expressed in human embryonic kidney 293 cells exhibited phosphorylation, internalization, and down-regulation in the presence of the opioid peptide [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) but not in response to morphine. In contrast, MOR1D and MOR1E exhibited robust phosphorylation, internalization, and down-regulation in response to both DAMGO and morphine. DAMGO elicited a similar desensitization (during an 8-h exposure) and resensitization (during a 50-min drug-free interval) of all four mu-receptor splice variants. After morphine treatment, however, MOR1 and MOR1C showed a faster desensitization and no resensitization as compared with MOR1D and MOR1E. These results strongly reinforce the hypothesis that receptor phosphorylation and internalization are required for opioid receptor reactivation thus counteracting agonist-induced desensitization. Our findings also suggest a mechanism by which cell- and tissue-specific C-terminal splicing of the mu-opioid receptor may significantly modulate the development of tolerance to the various effects of morphine.  相似文献   

2.
3.
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu‐opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co‐regulator modifying human MOR gene expression by protein–protein interaction with PCBP1. A human brain cDNA library was screened using the two‐hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1‐RACK1 interaction was confirmed via in vivo validation using the two‐hybrid system, and by co‐immunoprecipitation with anti‐PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co‐immunoprecipitation suggested that RACK1‐PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over‐expression resulted in a dose‐dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock‐down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT‐PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by 3H‐diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.  相似文献   

4.
Previously, a single-stranded (ss) DNA element, polypyrimidine (PPy) element, was found to be important for the proximal promoter activity of mouse micro-opioid receptor (MOR) gene in a neuronal cell model. In this study, we identified the presence of unknown ssDNA binding proteins specifically bound to MOR ssPPy element in the mouse brain, implicating the physiological significance of these proteins. To identify the ssDNA binding proteins, yeast one-hybrid system with PPy element as the bait was used to screen a mouse brain cDNA library. The clone encoding poly C binding protein (PCBP) was obtained. Its full-length cDNA sequence and protein with molecular weight approximately 38 kDa were confirmed. Electrophoretic mobility shift analysis (EMSA) revealed that PCBP bound to ssPPy element, but not doubled-stranded, in a sequence-specific manner. EMSA with anti-PCBP antibody demonstrated the involvement of PCBP in MOR ssPPy/proteins complexes of mouse brain and MOR expressing neuroblastoma NMB cells. Functional analysis showed that PCBP trans-activated MOR promoter as well as a heterologous promoter containing MOR PPy element. Importantly, ectopic expression of PCBP in NMB cells up-regulated the expression level of endogenous MOR gene in vivo in a dose-dependent manner. Collectively, above results suggest that PCBP participates in neuronal MOR gene expression.  相似文献   

5.
The mu opioid receptor (MOR) plays a central role in mediating acute and chronic effects of narcotic drugs. Three rare single nucleotide polymorphisms in the hMOR gene have been identified that cause amino acid substitutions in the third intracellular (i3) loop of MOR (R260H, R265H, and S268P). Genotyping 252 individuals of the Coriell collection identified one allele encoding the R265H-MOR variant and a new variant encoding D274N-MOR. Variants R260H-, R265H-, and S268P-MOR were constructed and transfected into HEK293 cells. Morphine stimulated G protein coupling of the three receptor variants to a maximal level approaching that of wild type MOR. In contrast, spontaneous, agonist-independent (basal) MOR signaling, proposed to play a role in opioid tolerance and dependence, was significantly reduced for R260H- and R265H-MOR. Moreover, domains within the i3 loop of MOR have been shown to interact with both G proteins and calmodulin (CaM). CaM binding was deficient for variants R265H- and S268P-MOR, suggesting that domains for G protein coupling and CaM binding overlap partially. Morphine pretreatment significantly enhanced basal G protein coupling of wild type MOR, which is thought to result from release of CaM. In contrast basal G protein coupling activity of the three variants was unaffected by morphine pretreatment consistent with diminished CaM regulation, low basal activity, or both. In conclusion, each of the three single nucleotide polymorphisms mapping to the i3 loop of MOR caused substantial changes in basal G protein coupling, CaM binding, or both. Carriers of the mutant alleles might display altered responses to narcotic analgesics.  相似文献   

6.
The distribution of the mRNA of different C-terminal splice variants of the μ-opioid receptor in rat CNS was assessed by RT-PCR. The mRNA species for MOR1, MOR1A and MOR1B were readily detectable and distributed widely throughout the rat CNS, with levels of MOR1 and MOR1A mRNA being overall greater than for MOR1B. We did not find convincing evidence that significant levels of MOR1C, MOR1C1, MOR1C2 and MOR1D are present in rat CNS. To examine possible differences in the agonist-induced regulation of MOR1, MOR1A and MOR1B, we expressed these constructs in HEK293 cells along with G-protein-coupled inwardly rectifying K+ channel subunits and measured the rate and extent of desensitisation of ( d -Ala2, N -Me-Phe4,glycinol5)-enkephalin (DAMGO)- and morphine-induced G-protein-coupled inwardly rectifying K+ currents. Morphine-induced desensitisation was rapid for all three splice variants ( t ½: 1.2–1.7 min) but DAMGO-induced desensitisation was significantly slower for MOR1B ( t ½ 4.2 min). Inhibition of endocytosis by expression of a dynamin-dominant negative mutant increased the rate of DAMGO-induced desensitisation of MOR1B. These data show that some splice variants of μ-opioid receptor are widely expressed in rat CNS but question the existence of others that have been reported in the literature. In addition, whereas the rate of desensitisation of MOR1 and MOR1A is agonist-independent, that for MOR1B is agonist-dependent.  相似文献   

7.
To date, five human metabotropic glutamate (mGlu) 1 receptor splice variants (1a, 1b, 1d, 1f, and 1g) have been described, all of which involve alternative C-terminal splicing. mGlu1a receptor contains a long C-terminal domain (341 amino acids), which has been shown to scaffold with several proteins and contribute to the structure of the post-synaptic density. However, several shorter mGlu1 receptor splice variants lack the sequence required for these interactions, and no major functional differences between these short splice variants have been described. By using RT-PCR we have shown that two human melanoma cell lines express both mGlu1a and mGlu1b receptors. In addition, using 3′RACE, we identified three previously unknown mGlu1 receptor mRNAs. Two differ in the length of their 3′ untranslated region (UTR), and encode the same predicted protein as mGlu1g receptor—the shortest of all mGlu1 receptor splice variants. The third mRNA, named mGlu1h, encodes a predicted C-terminal splice variant of 10 additional amino acids. mGlu1h mRNA was observed in two different melanoma cell lines and is overexpressed, compared with melanoma precursor cells, melanocytes. Most importantly, this new splice variant, mGlu1h receptor, is encoded by two previously unidentified exons located within the human GRM1 gene. Additionally, these new exons are found exclusively within the GRM1 genes of higher primates and are highly conserved. Therefore, we hypothesize that mGlu1h receptors play a distinct role in primate glutamatergic signaling.  相似文献   

8.
Regulators of G-protein signaling (RGS) 9-2 is a striatal enriched protein that controls G protein coupled receptor signaling duration by accelerating Galpha subunit guanosine triphosphate hydrolysis. We have previously demonstrated that mice lacking the RGS9 gene show enhanced morphine analgesia and delayed development of tolerance. Here we extend these studies to understand the mechanism via which RGS9-2 modulates opiate actions. Our data suggest that RGS9-2 prevents several events triggered by mu-opioid receptor (MOR) activation. In transiently transfected PC12 cells, RGS9-2 delays agonist induced internalization of epitope HA-tagged mu-opioid receptor. This action of RGS9-2 requires localization of the protein near the cell membrane. Co-immunoprecipitation studies reveal that RGS9-2 interacts with HA-tagged mu-opioid receptor, and that this interaction is enhanced by morphine treatment. In addition, morphine promotes the association of RGS9-2 with another essential component of MOR desensitization, beta-arrestin-2. We also show that over-expression of RGS9-2 prevents opiate-induced extracellular signal-regulated kinase phosphorylation. Our data indicate that RGS9-2 plays an essential role in opiate actions, by negatively modulating MOR downstream signaling as well as the rate of MOR endocytosis.  相似文献   

9.
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system. Metabotropic GABA(B) receptors are heterodimeric G-protein-coupled receptors (GPCRs) consisting of GABA(B1) and GABA(B2) subunits. The intracellular C-terminal domains of GABA(B) receptors are involved in heterodimerization, oligomerization, and association with other proteins, which results in a large receptor complex. Multiple splice variants of the GABA(B1) subunit have been identified in which GABA(B1a) and GABA(B1b) are the most abundant isoforms in the nervous system. Isoforms GABA(B1c) through GABA(B1n) are minor isoforms and are detectable only at mRNA levels. Some of the minor isoforms have been detected in peripheral tissues and encode putative soluble proteins with C-terminal truncations. Interestingly, increased expression of GABA(B) receptors has been detected in several human cancer cells and tissues. Moreover, GABA(B) receptor agonist baclofen inhibited tumor growth in rat models. GABA(B) receptor activation not only induces suppressing the proliferation and migration of various human tumor cells but also results in inactivation of CREB (cAMP-responsive element binding protein) and ERK in tumor cells. Their structural complexity makes it possible to disrupt the functions of GABA(B) receptors in various ways, raising GABA(B) receptor diversity as a potential therapeutic target in some human cancers.  相似文献   

10.
We have recently shown that the mu-opioid receptor [MOR1, also termed mu-opioid peptide (MOP) receptor] is associated with the phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane. We further demonstrated that, in human embryonic kidney (HEK) 293 cells co-expressing MOR1 and PLD2, treatment with (D-Ala2, Me Phe4, Glyol5)enkephalin (DAMGO) led to an increase in PLD2 activity and an induction of receptor endocytosis, whereas morphine, which does not induce opioid receptor endocytosis, failed to activate PLD2. In contrast, a C-terminal splice variant of the mu-opioid receptor (MOR1D, also termed MOP(1D)) exhibited robust endocytosis in response to both DAMGO and morphine treatment. We report here that MOR1D also mediates an agonist-independent (constitutive) PLD2-activation facilitating agonist-induced and constitutive receptor endocytosis. Inhibition of PLD2 activity by over-expression of a dominant negative PLD2 (nPLD2) blocked the constitutive PLD2 activation and impaired the endocytosis of MOR1D receptors. Moreover, we provide evidence that the endocytotic trafficking of the delta-opioid receptor [DOR, also termed delta-opioid peptide (DOP) receptor] and cannabinoid receptor isoform 1 (CB1) is also mediated by a PLD2-dependent pathway. These data indicate the generally important role for PLD2 in the regulation of agonist-dependent and agonist-independent G protein-coupled receptor (GPCR) endocytosis.  相似文献   

11.
12.
The proximal promoter of mouse mu-opioid receptor (MOR) gene is the dominant promoter for directing MOR-1 gene expression in brain. Sp1/Sp3 (Sps) and poly(C) binding protein 1 (PCBP) bind to a cis-element of MOR proximal promoter. Functional interaction between Sps and PCBP and their individual roles on MOR proximal core promoter were investigated using SL2 cells, devoid of Sps and PCBP. Each factor contributed differentially to the promoter, with a rank order of activity Sp1>Sp3>PCBP. Functional analysis suggested the interplay of Sps and PCBP in an additive manner. The in vivo binding of individual Sps or PCBP to MOR proximal promoter was demonstrated using chromatin immunoprecipitation (ChIP). Re-ChIP assays further suggested simultaneous bindings of Sps and PCBP to the proximal promoter, indicating physiologically relevant communication between Sps and PCBP. Collectively, results documented that a functional coordination between Sps and PCBP contributed to cell-specific MOR gene expression.  相似文献   

13.
Agonist exposure of many G protein-coupled receptors induces a rapid receptor phosphorylation and uncoupling from G proteins. Resensitization of these desensitized receptors requires endocytosis and subsequent dephosphorylation. Using a yeast two-hybrid screen, the rat mu-opioid receptor (MOR1, also termed MOP) was found to be associated with phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane, which has been implicated in the formation of endocytotic vesicles. Coimmunoprecipitation experiments in HEK293 cells coexpressing MOR1 and PLD2 confirmed that MOR1 constitutively interacts with PLD2. Treatment with the mu receptor agonist DAMGO ([d-Ala(2), Me Phe(4), Glyol(5)]enkephalin) led to an increase in PLD2 activity, whereas morphine, which does not induce MOR1 receptor internalization, failed to induce PLD2 activation. The DAMGO-mediated PLD2 activation was inhibited by brefeldin A, an inhibitor of ADP-ribosylation factor (ARF) but not by the protein kinase C (PKC) inhibitor calphostin C indicating that opioid receptor-mediated activation of PLD2 is ARF- but not PKC-dependent. Furthermore, heterologous stimulation of PLD2 by phorbol ester led to an accelerated internalization of the mu-opioid receptor after both DAMGO and morphine exposure. Conversely the inhibition of PLD2-mediated phosphatidic acid formation by 1-butanol or overexpression of a negative mutant of PLD2 prevented agonist-mediated endocytosis of MOR1. Together, these data suggest that PLD2 play a key role in the regulation of agonist-induced endocytosis of the mu-opioid receptor.  相似文献   

14.
While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3''-5''-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR''s extreme reaction to opioids.  相似文献   

15.
16.
17.
The micro-opioid receptor (MOR1) and the substance P receptor (NK1) coexist and functionally interact in nociceptive brain regions; however, a molecular basis for this interaction has not been established. Using coimmunoprecipitation and bioluminescence resonance energy transfer (BRET), we show that MOR1 and NK1 can form heterodimers in HEK 293 cells coexpressing the two receptors. Although NK1-MOR1 heterodimerization did not substantially change the ligand binding and signaling properties of these receptors, it dramatically altered their internalization and resensitization profile. Exposure of the NK1-MOR1 heterodimer to the MOR1-selective ligand [D-Ala2,Me-Phe4,Gly5-ol]enkephalin (DAMGO) promoted cross-phosphorylation and cointernalization of the NK1 receptor. Conversely, exposure of the NK1-MOR1 heterodimer to the NK1-selective ligand substance P (SP) promoted cross-phosphorylation and cointernalization of the MOR1 receptor. In cells expressing MOR1 alone, beta-arrestin directs the receptors to clathrin-coated pits, but does not internalize with the receptor. In cells expressing NK1 alone, beta-arrestin internalizes with the receptor into endosomes. Interestingly, in cells coexpressing MOR1 and NK1 both DAMGO and SP induced the recruitment of beta-arrestin to the plasma membrane and cointernalization of NK1-MOR1 heterodimers with beta-arrestin into the same endosomal compartment. Consequently, resensitization of MOR1-dependent receptor functions was severely delayed in coexpressing cells as compared with cells expressing MOR1 alone. Together, our findings indicate that MOR1 by virtue of its physical interaction with NK1 is sequestered via an endocytotic pathway with delayed recycling and resensitization kinetics.  相似文献   

18.
The adaptor protein Grb10 is a close homolog of Grb7 and Grb14. These proteins are characterized by an N-terminal proline-rich region, a Ras–GTPase binding domain, a PH domain, an SH2 domain and a BPS domain in between the PH and SH2 domains. Human Grb10 gene encodes three splice variants. These variants show differences in functionality. Grb10 associates with multiple proteins including tyrosine kinases in a tyrosine phosphorylation dependent or independent manner. Association with multiple proteins allows Grb10 to regulate different signaling pathways resulting in different biological consequences.  相似文献   

19.
Receptor phosphorylation, arrestin binding, uncoupling from G protein and subsequent endocytosis have been implicated in G protein-coupled receptor desensitization after chronic agonist exposure. In search of proteins regulating the mu-opioid receptor endocytosis, we have recently established that activation of phospholipase D (PLD)2 is required for agonist-induced mu-opioid receptor endocytosis. In this study, we determined the effect of PLD2 activity on the desensitization and resensitization rate of the mu-opioid receptor. We clearly demonstrated that inhibition of PLD2-mediated phosphatidic acid formation by alcohol (1-butanol or ethanol) or overexpression of a dominant negative mutant of PLD2 prevented agonist-mediated endocytosis and resulted in a faster desensitization rate of the mu-opioid receptor after chronic (D-Ala2, Me Phe4, Glyol5)enkephalin treatment in human embryonic kidney 293 cells. Moreover, inhibition of PLD2 activity led to an impairment of the resensitization rate of the mu-opioid receptor. In summary, our data strongly suggest that PLD2 is a modulator of agonist-induced endocytosis, desensitization and resensitization of the mu-opioid receptor.  相似文献   

20.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号