首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cx40:Cx43 expression ratio in A7r5 cells is augmented in growth stimulated vs. growth arrested conditions. To determine the impact of changing Cx40:Cx43 expression ratio on gap junction function, we have developed A7r5 cell lines that display Cx40:Cx43 ratios of 1:1 (66B5n) and 10:1 (A7r540C3). When Rin43 cells were paired with these coexpressing cells, there was an increasing asymmetry of voltage dependent gating as the Cx40:Cx43 ratio increased in the coexpressing cell. This asymmetry was opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In addition, when Rin43 cells were paired with coexpressing cells there was a shift toward smaller single channel event amplitudes with increasing Cx40:Cx43 ratio in the coexpressing cell. Again, this is opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In dye coupling experiments, 6B5N, A7r5, and A7r540C3 cells displayed charge and size selectivity that increased with increasing Cx40:Cx43 expression ratio. These data indicate that although the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents that comprise the channel, the dye permeability data fit what would be predicted by an increase in Cx40:Cx43 ratio.  相似文献   

2.
Incells that coexpress connexin (Cx)40 and Cx43, the ratio of expressioncan vary depending on the cellular environment. We examined the effectof changing Cx40:Cx43 expression ratio on functional gap junctionproperties. Rin cells transfected with Cx40 or Cx43 (Rin40, Rin43) werecocultured with 6B5n, A7r5, A7r540C1, or A7r540C3 cells forelectrophysiological and dye coupling analysis. Cx40:Cx43 expressionratio in 6B5n, A7r5, A7r540C1, and A7r540C3 cells was ~1:1, 3:1, 5:1,and 10:1, respectively. When Rin43 cells were paired with coexpressingcells, there was an increasing asymmetry of voltage-dependent gatingand a shift toward smaller conductance events as Cx40:Cx43 ratioincreased in the coexpressing cell. These observations could not bepredicted by linear combinations of Cx40 and Cx43 properties inproportion to the expressed ratios of the two Cxs. When Rin40 cellswere paired with coexpressing cells, the net voltage gating andsingle-channel conductance behavior were similar to those ofRin40/Rin40 cell pairs. Dye permeability properties of cell monolayersdemonstrated that as Cx40:Cx43 expression ratio increased incoexpressing cells the charge and size selectivity of dye transferreflected that of Rin40 cells, as would be predicted. These dataindicate that the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents expressed in the cell; however, the dyepermeability of these same channels can be predicted by the relative Cx contributions.

  相似文献   

3.
Immunohistochemical co-localization of distinct connexins (Cxs) in junctional areas suggests the formation of heteromultimeric channels. To determine the docking effects of the heterotypic combination of Cx43 and Cx45 on the voltage-gating properties of their channels, we transfected DNA encoding Cx43 or Cx45 into N2A neuroblastoma or HeLa cells. Using a double whole-cell voltage-clamp technique, we determined macroscopic and single-channel gating properties of the intercellular channels formed. Cx43-Cx45 heterotypic channels had rectifying properties where Cx45 connexons inactivated rapidly upon hyperpolarizing voltage pulses applied to the Cx45-expressing cell. During depolarizing pulses to the Cx45-expressing cell, Cx43 connexons inactivated with substantially reduced kinetics as compared with homotypic Cx43 channels. Similar slow kinetics was observed for homotypic Cx43M257 (truncation mutant). Heterotypic channels had a main conductance whose value was predicted by the sum of corresponding homomeric connexon conductances; it was not voltage dependent and had no detectable residual conductance. The voltage-gating kinetics of heterotypic channels and their single-channel behavior implicate a role for the Cx43 carboxyl-terminal domain in the fast gating mechanism and in the establishment of residual conductance. Our results also suggest that heterotypic docking may lead to conformational changes that inhibit this action of the Cx43 carboxyl-terminal domain.  相似文献   

4.
In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.  相似文献   

5.
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

6.
We examined the permeabilities of homotypic and heterotypic gap junction (GJ) channels formed of rodent connexins (Cx) 30.2, 40, 43, and 45, which are expressed in the heart and other tissues, using fluorescent dyes differing in net charge and molecular mass. Combining fluorescent imaging and electrophysiological recordings in the same cell pairs, we evaluated the single-channel permeability (P(gamma)). All homotypic channels were permeable to the anionic monovalent dye Alexa Fluor-350 (AF(350)), but mCx30.2 channels exhibited a significantly lower P(gamma) than the others. The anionic divalent dye Lucifer yellow (LY) remained permeant in Cx40, Cx43, and Cx45 channels, but transfer through mCx30.2 channels was not detected. Heterotypic channels generally exhibited P(gamma) values that were intermediate to the corresponding homotypic channels. P(gamma) values of mCx30.2/Cx40, mCx30.2/Cx43, or mCx30.2/Cx45 heterotypic channels for AF(350) were similar and approximately twofold higher than P(gamma) values of mCx30.2 homotypic channels. Permeabilities for cationic dyes were assessed only qualitatively because of their binding to nucleic acids. All homotypic and heterotypic channel configurations were permeable to ethidium bromide and 4,6-diamidino-2-phenylindole. Permeability for propidium iodide was limited only for GJ channels that contain at least one mCx30.2 hemichannel. In summary, we have demonstrated that Cx40, Cx43, and Cx45 are permeant to all examined cationic and anionic dyes, whereas mCx30.2 demonstrates permeation restrictions for molecules with molecular mass over approximately 400 Da. The ratio of single-channel conductance to permeability for AF(350) was approximately 40- to 170-fold higher for mCx30.2 than for Cx40, Cx43, and Cx45, suggesting that mCx30.2 GJs are notably more adapted to perform electrical rather than metabolic cell-cell communication.  相似文献   

7.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

8.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

9.
10.
《FEBS letters》2014,588(8):1423-1429
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin.  相似文献   

11.
12.
During the development of the mammary gland, duct-lining epithelial cells progress through a program of expansive proliferation, followed by a terminal differentiation that allows for the biosynthesis and secretion of milk during lactation. The role of gap junction proteins, connexins, in the development and function of this secretory epithelium was investigated. Connexins, Cx26 and Cx32, were differentially expressed throughout pregnancy and lactation in alveolar cells. Cx26 poly-(A)(+) RNA and protein levels increased from early pregnancy, whereas Cx32 was detectable only during lactation. At this time, immunolocalization of connexins by confocal microscopy and immunogold labeling of high-pressure frozen freeze-substituted tissue showed that both connexins colocalized to the same junctional plaque. Analysis of gap junction hemichannels (connexons) isolated from lactating mammary gland plasma membranes by a rate-density centrifugation procedure, followed by immunoprecipitation and by size-exclusion chromatography, showed that Cx26 and Cx32 were organized as homomeric and heteromeric connexons. Structural diversity in the assembly of gap junction hemichannels demonstrated between pregnant and lactating mammary gland may account for differences in ionic and molecular signaling that may physiologically influence the onset and/or maintenance of the secretory phenotype of alveolar epithelial cells.  相似文献   

13.
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1–5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256–289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.  相似文献   

14.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

15.
Cardiac remodeling resulting from impairment of myocardial integrity leads to heart failure, through still incompletely understood mechanisms. The fibroblast growth factor (FGF) system has been implicated in tissue maintenance, but its role in the adult heart is not well defined. We hypothesized that the FGF system plays a role in the maintenance of cardiac homeostasis, and the impairment of cardiomyocyte FGF signaling leads to pathological cardiac remodeling.  相似文献   

16.
Sarah V. Gerhart 《FEBS letters》2009,583(21):3419-1089
In addition to having a Cx43 ortholog, the zebrafish genome also contains a Cx43-like gene, Cx40.8. Here, we investigate the expression of cx40.8 in zebrafish fins and the function of Cx40.8 in HeLa cells. We find that cx40.8 is present in the same population of dividing cells as cx43. Unlike Cx43, dye coupling assays suggest that Cx40.8 only inefficiently forms functional gap junction channels. However, co-transfection reveals that Cx40.8 can co-localize with Cx43 in gap junction plaques, and that the resulting plaques contain functional gap junction channels. Together, these data suggest the possibility that Cx40.8 may functionally interact with Cx43 to regulate cell proliferation in vivo.

Structured summary

MINT-7266123: cx40.8 (genbank_protein_gi:68354404) and cx43 (uniprotkb:O57474) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

17.
The beta 2 gap junction protein (Cx26) was expressed in an insect cell line by infection with a baculovirus vector containing the rat beta 2 cDNA. Isolated beta 2 gap junction connexons were reconstituted into planar lipid bilayers. Single channel activity was observed with a unitary conductance of 35-45 pS in 200 mM KCl. Channels with conductance values of 60 pS and 90-110 pS also coexisted with the lower conducting channel suggesting that there are channels with different conductance properties within a population of connexons. Channel activity was observed at voltages of up to 150 mV. Furthermore, the characterization of these channel properties from the beta 2 connexons that were generated by this heterologous expression system has provided the basis for identifying an endogenous beta 2 connexon channel in material reconstituted from native rat liver gap junctions.  相似文献   

18.
Diffraction diagnosis of protein folding in gap junction connexons.   总被引:2,自引:0,他引:2       下载免费PDF全文
To diagnose the regular polypeptide conformation in gap junction membranes, the x-ray intensities diffracted from oriented specimens have been separated into a modulated component due to the coherently ordered portion of the channel-forming pairs of connexon hexamers and a diffuse component due to the disordered parts. The spherically averaged ordered protein diffraction, in the resolution range 15-4 A, was compared with intensity curves calculated from the Fourier transforms of proteins representative of the major tertiary structural classes. From this comparison the alpha-helical content of the ordered portion of the connexon was estimated to be approximately 60%. Calculation of cylindrically averaged patterns for oriented distributions of alpha-helical and beta-sheet proteins demonstrated that the ratio of the modulated diffracted intensity near 5 A spacing on the meridian and 10 A spacing on the equator observed from the gap junctions can be accounted for by alpha-helical segments inclined relative to the connexon axis. Model dimers of connexonlike hexamers were constructed from alpha-helix bundle proteins to correlate features in the calculated diffraction patterns with the model parameters. On the basis of these correlations, the ordered gap junction diffraction data indicate that alpha-helical segments centered at 38 A from the midplane of the gap have a mean radial location approximately 24 A from the hexamer axis, and an axial projected length of approximately 35 A. Thus, these alpha-helical segments traverse the hydrocarbon core of the lipid bilayer, as expected for the four hydrophobic sequences of the connexin molecule.  相似文献   

19.
Gap junctions serve as intercellular conduits that allow the exchange of small molecular weight molecules (up to 1 kDa) including ions, metabolic precursors and second messengers. Microglia are capable of recognizing peptidoglycan (PGN) derived from the outer cell wall of Staphylococcus aureus, a prevalent CNS pathogen, and respond with the robust elaboration of numerous pro-inflammatory mediators. Based on recent reports demonstrating the ability of tumor necrosis factor-alpha and interferon-gamma to induce gap junction coupling in macrophages and microglia, it is possible that pro-inflammatory mediators released from PGN-activated microglia are capable of inducing microglial gap junction communication. In this study, we examined the effects of S. aureus-derived PGN on Cx43, the major connexin in microglial gap junction channels, and functional gap junction communication using single-cell microinjections of Lucifer yellow (LY). Exposure of primary mouse microglia to PGN led to a significant increase in Cx43 mRNA and protein expression. LY microinjection studies revealed that PGN-treated microglia were functionally coupled via gap junctions, the specificity of which was confirmed by the reversal of activation-induced dye coupling by the gap junction blocker 18-alpha-glycyrrhetinic acid. In contrast to PGN-activated microglia, unstimulated cells consistently failed to exhibit LY dye coupling. These results indicate that PGN stimulation can induce the formation of a functional microglial syncytium, suggesting that these cells may be capable of influencing neuro-inflammatory responses in the context of CNS bacterial infections through gap junction intercellular communication.  相似文献   

20.
Summary SDS-polyacrylamide gel electrophoresis and immunoblotting were used to investigate inter- and intramolecular disulfide bonds to connexin 43 (the cardiac gap junctional protein) in isolated rat heart gap junctions and in whole heart fractions. In gap junctions isolated in the absence of alkylating agent, connexin 43 molecules are cross-linked by disulfide bonds. The use of iodoacetamide (100mm) for the first steps of isolation procedure prevents the formation of these artifactual linkages. Investigation of connexin 43 in whole heart fractions by means of antibodies confirms the results obtained with isolated gap junctions; that is, connexin 43 molecules are not interconnected with disulfide bridges. In whole heart fractions treated with alkylating agents, a 38 kD protein, immunologically related to connexin 43, and containing intramolecular disulfide bonds is detected. It is hypothesized that this protein might be a folded form of connexin 43, a precursory form of the molecules embedded in the gap junctions.The abbreviations used are BSA bovine serum albumin - EDTA ethylene diamine tetra-acetic acid - IAA iodoacetamide - NEM N-ethylmaleimide - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsfonyl fluoride - SDS sodium dodecyl sulfate - Tris trishydroxymethyl-aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号