首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sub-arctic Lake Fjellfrøsvatn, northern Norway, has two morphs of Arctic charr that are reproductively isolated because they spawn 5 months apart. The smaller morph (≤14 cm LF ) is confined to the profundal zone of the lake and the larger morph is mainly littoral. Three hypotheses were tested: (i) the offspring of the profundal Arctic charr grow slower than the offspring of the littoral Arctic charr under identical conditions, thus indicating a genetic basis for the slow growth of the profundal Arctic charr in the wild; (ii) the wild phenotypes of the two morphs are morphometrically different and the differences are persistent in the offspring; (iii) the offspring of the two morphs have different behaviour traits under similar treatments. The first hypothesis was rejected; offspring of the profundal morph grew slightly better than offspring of the littoral morph at 10° C in the laboratory. The second and third hypotheses were supported by the data. Wild-caught fish of the two morphs differed in several morphometric characters and most of the differences persisted in the offspring. In the laboratory, offspring of the littoral morph were more active, more aggressive and more pelagic than offspring of the profundal morph and naive offspring of the profundal morph were more effective in eating live chironomid larvae than were offspring of the littoral morph. The data for morphometry and behaviour, but not growth, provide evidence for genetic differences between the two Arctic charr morphs of Fjellfrøsvatn.  相似文献   

2.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

3.
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.  相似文献   

4.
Two previously unknown profundal dwelling charr morphs of the genus Salvelinus from Lake Kronotskoe are described in this article. According to their lifestyle peculiarities, these morphs were named the “bigmouth charr” and “smallmouth charr.” The former group is near-bottom benthivorous, while the latter one inhabits the water column and occupies the omnivorous niche. Bigmouth and smallmouth charrs are distinguished from the rest of the sympatric charr morphs by their smaller size, shorter snout, larger eyes, as well as by several craniological traits and lower parasite abundance. Spawning of both morphs takes place directly in the profundal zone and lasts from late October to February. Additional studies are required to determine the systematic status of the new morphs.  相似文献   

5.
In polymorphic populations morphs usually diverge in morphology, ecology and life history, which is most likely driven by adaptations to different environments or resources. Sympatric morphs may develop differences in several life history traits to be able to maximize fitness in alternative niches and habitats. Here, the contrasting life history traits of three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs in a deep and oligotrophic lake in sub-arctic Norway are addressed. The charr morphs differ in spawning habitat and trophic niche. One is a littoral spawning morph that feeds on benthic invertebrates and zooplankton in the littoral and pelagic zones (referred to as the LO-morph), and two other are profundal spawning morphs that either utilize profundal soft bottom benthos as food resource (the PB-morph) or are piscivorous (the PP-morph). The LO-morph typically had intermediate life-history traits relative to the two profundal morphs that had highly contrasting life history traits, especially in growth and age and size of maturity. The PB-morph matured at a young age (~3 years) and at a small body size (~8.5 cm), thereby increasing their fitness by investing in reproduction early in life, which results in a short generation time and decreased probability of being predated before first reproduction. The PP-morph on the other hand, matured at an old age (~9.2 years) and a large body size (~26 cm), thereby increasing their fitness by investing in somatic growth to enhance initial fecundity, and also to reach a large body size profitable for piscivory. The different trade-off regime between the PP- and PB-morphs seems to be caused by adaptation to alternative trophic niches, and appears to be an important factor for the co-occurrence of the two sister-morphs in the profundal zone.  相似文献   

6.
The study compares the resource utilization of two sympatric Arctic charr morphs over an annual period in a subarctic lake. The two morphs are reproductively isolated in time and place of spawning, and are referred to as the littoral and profundal morphs (L-morph and P-morph) according to their spawning habitats. Fish were sampled monthly (ice-free season) or bimonthly (winter) using gillnets in the main lake habitats. The spatial range of the P-morph was restricted to the profundal zone throughout the whole annual period. The L-morph in contrast utilized all main habitats, exhibiting distinct seasonal and ontogenetic variations in habitat distribution. In the spring, the whole L-morph population was located along the bottom profile of the lake, in profundal and littoral habitats. During summer and autumn, habitat segregation occurred between different life-stages, juveniles mainly utilizing the profundal, pre-adults the pelagic and adult fishes the littoral zone. During winter the whole population was assembled in the littoral habitat. The L-morph also had large seasonal and ontogenetic variations in their feeding ecology, with littoral zoobenthos, zooplankton and surface insects being important prey. The P-morph had a narrower diet niche mainly consisting of chironomid larvae and other profundal zoobenthos. Hence, the two Arctic charr morphs exhibited a consistent resource differentiation during all annual seasons and throughout their life cycles, except for a dietary overlap between P-morph and juvenile L-morph charr in the profundal during summer. The findings are discussed in relation to resource polymorphism and incipient speciation.  相似文献   

7.
Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfr?svatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14cm, while the littoral charr grow to 40cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfr?svatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfr?svatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.  相似文献   

8.
Interspecific morph variations in trophic morphology related to skull-bones and head traits is associated to ecological segregation of Arctic charr morphs (genus Salvelinus) in two sub-arctic lakes (Fjellfrøsvatn and Skogsfjordvatn, Norway). The replicated morph pair, the profundal spawning benthivorous PB-morph and the littoral spawning omnivorous LO-morph of Arctic charr, diverge along the shallow-deep-water resource axis. In Skogsfjordvatn there is also a profundal spawning piscivorous PP-morph. The PB-morphs from both lakes have similar skull-bone traits and head morphology such as elongated jaw-bones, small opercular bones and relatively longer heads. The PP-morph also has an elongated head, relatively small opercular bones as well as larger jaw-bones. In contrast, the LO-morphs in both lakes have shorter jaw-bones, larger opercular bones in addition to relatively small heads. However, some small non-parallel differences exist among the morphs from the two lakes. Overall, all profundal morphs (PB and PP) have relatively similar skull-bone structures, suggesting adaptations to the deep-water environment but also to their separated dietary niches. There is strong evidence for parallel evolution with some local adaptations in skull-bones and head morphology of the PB-morph and the LO-morph from separate lakes.  相似文献   

9.
10.
Reproductive traits differ between intralacustrine Arctic charr morphs. Here, we examine three sympatric lacustrine Arctic charr morphs with respect to fecundity, egg size and spawning time/site to assess reproductive investments and trade‐offs, and possible fitness consequences. The littoral omnivore morph (LO‐morph) utilizes the upper water for feeding and reproduction and spawn early in October. The large profundal piscivore morph (PP‐morph) and the small profundal benthivore morph (PB‐morph) utilize the profundal habitat for feeding and reproduction and spawn in December and November, respectively. Females from all morphs were sampled for fecundity and egg‐size analysis. There were large differences between the morphs. The PB‐morph had the lowest fecundity (mean = 45, SD = 13) and smallest egg size (mean = 3.2 mm, SD = 0.32 mm). In contrast, the PP‐morph had the highest fecundity (mean = 859.5, SD = 462) and the largest egg size (mean = 4.5 mm, SD = 0.46 mm), whereas the LO‐morph had intermediate fecundity (mean = 580, SD = 225) and egg size (mean = 4.3, SD = 0.24 mm). Fecundity increased with increasing body size within each morph. This was not the case for egg size, which was independent of body sizes within morph. Different adaptations to feeding and habitat utilization have apparently led to a difference in the trade‐off between fecundity and egg size among the three different morphs.  相似文献   

11.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

12.
Natural populations often vary in their degree of ecological, morphological and genetic divergence. This variation can be arranged along an ecological speciation continuum of increasingly discrete variation, with high inter-individual variation at one end and well defined species in the other. In postglacial fishes, evolutionary divergence has commonly resulted in the co-occurrence of a pelagic and a benthic specialist. We studied three replicate lakes supporting sympatric pelagic and benthic European whitefish (Coregonus lavaretus (L.)) morphs in search for early signs of possible further divergence into more specialized niches. Using stomach content data (recent diet) and stable isotope analyses (time-integrated measure of trophic niche use), we observed a split in the trophic niche within the benthic whitefish morph, with individuals specializing on either littoral or profundal resources. This divergence in resource use was accompanied by small but significant differences in an adaptive morphological trait (gill raker number) and significant genetic differences between fish exploiting littoral and profundal habitats and foraging resources. The same pattern of parallel divergence was found in all three lakes, suggesting similar natural selection pressures driving and/or maintaining the divergence. The two levels of divergence (a clear and robust benthic – pelagic and a more subtle littoral – profundal divergence) observed in this study apparently represent different stages in the process of ecological speciation.  相似文献   

13.
Identifying the mechanisms initiating sympatric diversification in vertebrates has remained a conceptual challenge. Here, we analyse an assemblage of sympatric charr (Salvelinus malma) morphs from landlocked Lake Kronotskoe basin as a model to uncover the divergence pathways in freshwater fishes during the early life history stages. All morphs have distinct developmental biology, but a similar developmental rate retardation compared to the ancestor. Our study reveals that adult morphological differences, which acquire functionality at maturation, originate in the early juvenile stages due to heterochrony in skeletogenesis and allometric changes triggered by variation in metabolic activity. The craniofacial differences among the morphs result from asynchronous development of several skeletal modules. The accelerated ossification of teeth‐armed bones occurs in predatory feeding morphs, whereas cranial cover ossification is promoted in benthivorous morphs. These contrasting growth patterns have led to seven phenotypes that span a range far beyond the ancestral variability. The most distinct morphs are a riverine spawning, epilimnetic predator and a lacustrine spawning, profundal benthic feeder. Taken together, we argue that the adaptive morphological differentiation in these sympatric freshwater fishes is driven by diverging patterns in ossification rate and metabolic activity against a background of uneven somatic growth. This divergence is primarily associated with basic environmental differences on the nursery grounds that might be unrelated to resource use. This nonheritable phenotype divergence is then exposed to natural selection that could result in further adaptive genetic changes.  相似文献   

14.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

15.
Parallel phenotypic evolution occurs when independent populations evolve similar traits in response to similar selective regimes. However, populations inhabiting similar environments also frequently show some phenotypic differences that result from non‐parallel evolution. In this study, we quantified the relative importance of parallel evolution to similar foraging regimes and non‐parallel lake‐specific effects on morphological variation in European whitefish (Coregonus lavaretus). We found evidence for both lake‐specific morphological characteristics and parallel morphological divergence between whitefish specializing in feeding on profundal and littoral resources in three separate lakes. Foraging specialists expressed similar phenotypes in different lakes in both overall body shape and selected measured morphological traits. The morphology of the two whitefish specialists resembled that predicted from other fish species, supporting the conclusion of an adaptive significance of the observed morphological characteristics. Our results indicate that divergent natural selection resulting from foraging specialization is driving and/or maintaining the observed parallel morphological divergence. Whitefish in this study may represent an early stage of divergence towards the evolution of specialized morphs.  相似文献   

16.
Adaptive phenotypic divergence of sympatric morphs in a single species may have significant evolutionary consequences. In the present study, phenotypic impacts of predator on zooplankton prey populations were compared in two northern Finnish lakes; one with an allopatric whitefish, Coregonus lavaretus (L.), population and the other with three sympatric whitefish populations. First, we examined whether there were phenotypic associations with specific niches in allopatric and sympatric whitefish. Second, trait utility (i.e. number of gillrakers) of allopatric and sympatric whitefish in utilizing a pelagic resource was explored by comparing predator avoidance of prey, prey size in environment, and prey size in predator diet. The allopatric living large sparsely rakered (LSR) whitefish morph, was a generalist using both pelagic and benthic niches. In contrast, sympatric living whitefish morphs were specialized: LSR whitefish was a littoral benthivore, small sparsely rakered whitefish was a profundal benthivore and densely rakered (DR) whitefish was a pelagic planktivore. In the lake with allopatric whitefish, zooplankton prey did not migrate vertically to avoid predation whereas, in the lake with sympatric whitefish, all important prey taxa migrated significantly. Trait utility was observed as significantly smaller size of prey in environment and predator diet in the lake with DR whitefish than in the lake with only LSR whitefish.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 561–572.  相似文献   

17.
18.
Oligochaetes and water pollution in two deep Norwegian lakes   总被引:1,自引:1,他引:0  
Goran Milbrink 《Hydrobiologia》1994,278(1-3):213-222
Analyses of the oligochaete fauna of two of the deepest lakes in Scandinavia — the Norwegian lakes Mjösa (450 m) and Tyrifjorden (295 m), revealed a totally different species composition in the deep profundal compared with the upper profundal - in contact with the nutrient-enriched epilimnion. In both lakes a pronounced thermal stratification develops in the summer, thus the epilimnion receiving gross organic pollution behaves differently from the profundal. The lakes are each effectively divided into two bodies of water with limited water exchange between them, i.e. one major oligotrophic body and one minor more nutrient-rich. Since the 1950s both lakes have been exposed to heavy pollution of various kinds. In Lake Mjösa in 1975 and 1976 unpleasant algal blooms of the blue-green alga Oscillatoria bornetii fa. tenuis occurred. Bottom samples obtained at the same time revealed that the deep central bottoms of the lake were totally dominated by oligotrophic oligochaete indicators, i.e. by Stylodrilus heringianus and Spirosperma ferox, while the fauna of the upper profundal in the vicinity of domestic and agricultural sewage outfalls, wood processing industries, etc. was dominated by Limnodrilus hoffmeisteri and Tubifex tubifex in great abundance, indicating enriched conditions. Several other species indicative of eutrophy, were absent, most of them belonging to the genus Potamothrix. A fairly similar situation exists in Lake Tyrifjorden, where, for instance, in the shallow bay of Steinsfjorden — heavily eutrophied by agricultural wastes — blooms of blue-green algae have caused problems from time to time. The same oligochaete communities as in Lake Mjösa distinguish the central oligotrophic bottoms from the regionally more enriched upper profundal. The likely reasons for an intact profundal oligochaete fauna are great volumes of oxygen-rich hypolimnic water of low temperature and a high bottom/lake surface area ratio.  相似文献   

19.
Results of the first long-term investigation of the profundal chironomid fauna of Starnberger See, a prealpine lake are reported. Data are presented on the qualitative and quantitative composition of the chironomid fauna in the profundal of Starnberger See, on the spatial variation, and on the phenology of the dominant species, based on pupal occurrence and the seasonal distribution of larval instars. Twenty-five distinct chironomid taxa could be recorded in the profundal zone. Typical inhabitants of the profundal zone of Starnberger See are the larvae of the genus Micropsectra. The maximum abundance of Micropsectra larvae were found at 60 m with 5644 Ind.m−2. Abundance, distribution and phenology of the dominant chironomid species are discussed in comparison with other lakes.  相似文献   

20.
A benthological survey in a deep caldera, Lake Ikeda, southern Kyushu, Japan, in 1998 revealed that no zoobenthos were found in the deep profundal, although two tubificid oligochaetes, Tubifex tubifex and Limnodrilus hoffmeisteri, and a chironomid, Procladius sp., were distributed in the upper profundal zone. This is the first record of oligochaete composition in the lake. Lake Ikeda had been typically oligotrophic until the 1940s, and zoobenthic assemblages were recorded throughout the profundal bottom in the 1920s and 1970s. Recent disappearance of the deep profundal zoobenthos could be caused by the stagnation of anoxic waters in the hypolimnion, in connection with eutrophication triggered by nutrient loading, as well as change in the thermal circulation system presumably caused by global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号