首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extremely radioresistant bacterium Deinococcus radiodurans is evolutionarily closely related to the extremely thermophilic bacterium Thermus thermophilus. These bacteria have a single gene encoding an aspartate kinase (AK) that catalyzes the phosphorylation of L-aspartate. T. thermophilus has an aminoadipate pathway for lysine biosynthesis that does not use AK for lysine biosynthesis. Phylogenetic analysis in this study indicated that D. radiodurans AK has a different protein structure and a different evolutionary history from T. thermophilus AK. Disruption analysis of D. radiodurans AK indicated that D. radiodurans AK was not used for lysine biosynthesis but for threonine and methionine biosyntheses. A D. radiodurans AK disruption mutant exhibited a phenotype similar to a T. thermophilus AK disruption mutant, which indicates that these two AKs have different evolutionary origins, though their functions are not different.  相似文献   

2.
Fungi produce α‐aminoadipate, a precursor for penicillin and lysine via the α‐aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis.  相似文献   

3.
4.
Our previous studies revealed that lysine is synthesized through alpha-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from alpha-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the epsilon-amino group of N(2)-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N(2)-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the delta-amino group of N(2)-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N(2)-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis.  相似文献   

5.
6.
α‐Aminoadipate aminotransferase (AAA‐AT) catalyzes the amination of 2‐oxoadipate to α‐aminoadipate in the fourth step of the α‐aminoadipate pathway of lysine biosynthesis in fungi. The aromatic aminotransferase Aro8 has recently been identified as an AAA‐AT in Saccharomyces cerevisiae. This enzyme displays broad substrate selectivity, utilizing several amino acids and 2‐oxo acids as substrates. Here we report the 1.91Å resolution crystal structure of Aro8 and compare it to AAA‐AT LysN from Thermus thermophilus and human kynurenine aminotransferase II. Inspection of the active site of Aro8 reveals asymmetric cofactor binding with lysine‐pyridoxal‐5‐phosphate bound within the active site of one subunit in the Aro8 homodimer and pyridoxamine phosphate and a HEPES molecule bound to the other subunit. The HEPES buffer molecule binds within the substrate‐binding site of Aro8, yielding insights into the mechanism by which it recognizes multiple substrates and how this recognition differs from other AAA‐AT/kynurenine aminotransferases.  相似文献   

7.
8.
A bacterial thermostable citrate synthase has been analyzed to investigate the structural basis of its thermostability, and to compare such features with those previously identified in archaeal citrate synthases. The gene encoding the citrate synthase from Thermus aquaticus was identified from a gene library by screening with a PCR fragment amplified from genomic DNA using a primer based on the determined N-terminal amino acid sequence and a citrate synthase consensus primer. Apart from high sequence similarities with citrate synthase sequences within the Thermus/ Deinococcus group, the analyzed enzyme has highest similarities with the enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The recombinant enzyme is a dimer with high specific activity. Compared to its thermoactivity (T(opt)at 80 degrees C), the thermal stability of the enzyme is high, as judged from its T(m) (101 degrees C), and from irreversible thermal inactivation assays. Molecular modeling of the structure revealed an inter-subunit ion-pair network, comparable in size to the network found in the citrate synthase from P. furiosus; these networks are discussed in relation to the high thermal stability of these bacterial and archaeal enzymes.  相似文献   

9.
To study the biochemical properties of SSB's from Deinococcus grandis (DgrSSB) and Deinococcus proteolyticus (DprSSB), we have cloned the ssb genes obtained by PCR and have developed Escherichia coli overexpression systems. The genes consist of an open reading frame of 891 (DgrSSB) and 876 (DprSSB) nucleotides encoding proteins of 296 and 291 amino acids with a calculated molecular mass of 32.29 and 31.33 kDa, respectively. The amino-acid sequence of DgrSSB exhibits 45%, 44% and 82% identity and the amino-acid sequence of DprSSB reveals 43%, 43% and 69% identity with Thermus aquaticus (TaqSSB), Thermus thermophilus (TthSSB) and Deinococcus radiodurans SSBs, respectively. We show that DgrSSB and DprSSB are similar to Thermus/Deinococcus SSBs in their biochemical properties. They are functional as homodimers, with each monomer encoding two single-stranded DNA binding domains (OB-folds). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 33 nt per homodimer. In a complementation assay in E. coli, DgrSSB and DprSSB took over the in vivo function of EcoSSB. Thermostability with half-lives of about 1 min at 65-67.5 degrees C make DgrSSB and DprSSB similar to the known SSB of Deinococcus radiodurans (DraSSB).  相似文献   

10.
H Nakashima  K Nishikawa  T Ooi 《Proteins》1990,8(2):173-178
A compact mitochondrial gene contains all essential information about the synthesis of mitochondrial proteins which play their roles in a small compartment of the mitochondrium. Almost no noncoding regions have been found through the gene, but a necessary set of tRNAs for the 20 amino acids is provided for biosynthesis, some of them coding different amino acids from those in a usual cell. Since the gene is so compact that the produced proteins would have some characteristic aspects for the mitochondrium, amino acid compositions of mitochondrial proteins (mt-proteins) were examined in the 20-dimensional composition space. The results show that compositions of proteins translated from the mitochondrial genes have a distinct character having more hydrophobic content than others, which is illustrated by a clustered distribution in the multidimensional composition space. The cluster is located at the tail edge of the global distribution pattern of a Gaussian shape for other various kinds of proteins in the space. The mt-proteins are rich in hydrophobic amino acids as is a membrane protein, but are different from other membrane proteins in a lesser content of Val. A good correlation found between the base and amino acid compositions for the mitochondria was examined in comparison to those of organisms such as thermophilic bacterium having an extreme G-C-rich base composition.  相似文献   

11.
Although the presence of an enzyme that catalyzes beta-decarboxylating dehydrogenation of homoisocitrate to synthesize 2-oxoadipate has been postulated in the lysine biosynthesis pathway through alpha-aminoadipate (AAA), the enzyme has not yet been analyzed at all, because no gene encoding the enzyme has been identified until recently. A gene encoding a protein with a significant amino acid sequence identity to both isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase was cloned from Thermus thermophilus HB27. The gene product produced in recombinant Escherichia coli cells demonstrated homoisocitrate dehydrogenase (HICDH) activity. A knockout mutant of the gene showed an AAA-auxotrophic phenotype, indicating that the gene product is involved in lysine biosynthesis through AAA. We therefore named this gene hicdh. HICDH, the gene product, did not catalyze the conversion of 3-isopropylmalate to 2-oxoisocaproate, a leucine biosynthetic reaction, but it did recognize isocitrate, a related compound in the tricarboxylic acid cycle, as well as homoisocitrate as a substrate. It is of interest that HICDH catalyzes the reaction with isocitrate about 20 times more efficiently than the reaction with the putative native substrate, homoisocitrate. The broad specificity and possible dual function suggest that this enzyme represents a key link in the evolution of the pathways utilizing citrate derivatives. Site-directed mutagenesis study reveals that replacement of Arg(85) with Val in HICDH causes complete loss of activity with isocitrate but significant activity with 3-isopropylmalate and retains activity with homoisocitrate. These results indicate that Arg(85) is a key residue for both substrate specificity and evolution of beta-decarboxylating dehydrogenases.  相似文献   

12.
L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.  相似文献   

13.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

14.
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.  相似文献   

15.
The biosynthesis of fimbriae is a complex process requiring multiple genes which are generally found clustered on the chromosome. In Bordetella pertussis, only major fimbrial subunit genes have been identified, and no evidence has yet been found that they are located in a fimbrial gene cluster. To locate additional genes involved in the biosynthesis of B. pertussis fimbriae, we used TnphoA mutagenesis. A PhoA+ mutant (designated B176) was isolated which was affected in the production of both serotype 2 and 3 fimbriae. Cloning and sequencing of the DNA region harbouring the transposon insertion revealed the presence of at least three additional fimbrial genes, designated fimB, fimC and fimD. The transposon was found to be located in fimD. Analysis of PhoA activity indicated that the fimbrial gene cluster was positively regulated by the bvg locus. A potential binding site for BvgA was observed upstream of fimB. FimB showed homology with the so-called chaperone-like fimbrial proteins, while FimC was homologous with a class of fimbrial proteins located in the outer membrane and presumed to be involved in transport and anchorage of fimbrial subunits. An insertion mutation in fimB abolished the expression of fimbrial subunits, implicating this gene in the biosynthesis of both serotype 2 and 3 fimbriae. Upstream of fimB a pseudogene (fimA) was observed which showed homology with the three major fimbrial subunit genes, fim2, fim3 and fimX. The construction of a phylogenetic tree suggested that fimA may be the primordial major fimbrial subunit gene from which the other three were derived by gene duplication. Interestingly, the fimbrial gene cluster was found to be located directly downstream from the gene coding for the filamentous haemagglutinin, an important B. pertussis adhesin, possibly suggesting co-operation between the two loci in the pathogenesis of pertussis.  相似文献   

16.
The genome sequence of the extreme thermophile Thermus thermophilus   总被引:6,自引:0,他引:6  
Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.  相似文献   

17.
Plants frequently possess operon‐like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane‐related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent‐copalyl diphosphate or syn‐copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical‐modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane‐related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon‐like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.  相似文献   

18.
5S rRNA sequences were determined for the myxobacteria Cystobacter fuscus, Myxococcus coralloides, Sorangium cellulosum, and Nannocystis exedens and for the radioresistant bacteria Deinococcus radiodurans and Deinococcus radiophilus. A dendrogram was constructed by using weighted pairwise grouping based on these and all other previously known eubacterial 5S rRNA sequences, and this dendrogram showed differences as well as similarities compared with results derived from 16S rRNA analyses. In the dendrogram, Deinococcus 5S rRNA sequences clustered with 5S rRNA sequences of the genus Thermus, as suggested by the results of 16S rRNA analyses. However, in contrast to the 16S rRNA results, the Deinococcus-Thermus cluster divided the 5S rRNA sequences of the alpha subdivision of the class Proteobacteria from the 5S rRNA sequences of the beta and gamma subgroups of the Proteobacteria. The myxobacterial 5S rRNA sequence data failed to confirm the existence of a delta subgroup of the class Proteobacteria, which was suggested by the results of 16S rRNA analyses.  相似文献   

19.
20.
Escherichia coli express many types of O antigen, present in the outer membrane of the Gram-negative bacterial cell wall. O-Antigen biosynthesis genes are clustered together and differences seen in O-antigen types are due to genetic variation within this gene cluster. Sequencing of the E. coli O4 O-antigen gene cluster revealed a similar gene order and high levels of similarity to that of E. coli O26; indicating a common ancestor. These lateral transfer events observed within O-antigen gene clusters may occur as part of the evolution of the pathogenic clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号