共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular zinc metalloprotease, EmpA, is a putative virulence factor involved in pathogenicity of the fish pathogen Vibrio anguillarum. The 611-amino acid precursor of this enzyme is encoded by the empA gene. The residues His346, His350, Glu370, Glu347, His429, Tyr361 and Asp417 are highly conserved and putatively function together at the active site of the enzyme. In this study, empA was inserted into pET24d(+) and expressed in Escherichia coli strain BL21(DE3) as a 6 x His tagged protein (r-EmpA). All the conserved residues of EmpA mentioned above were individually mutated by site-directed mutagenesis and the mutants were also expressed (m-r-EmpAs). r-EmpA and m-r-EmpAs were purified, and assayed for their proteolytic activities with azocasein as the substrate and cytotoxicities on a flounder gill cell line. m-r-EmpAs that had been mutated at His346, His350, Glu370 and Glu347 almost completely lost their proteolytic activity and cytotoxicity, pointing towards the essential roles played by these residues. In contrast, those mutated at Tyr361, His429 and Asp417 still retained a partial proteolytic activity and cytotoxicity. Our results indicate that these conserved residues play important roles in enzymatic activity and that the proteolytic activity of the enzyme is involved in the pathogenesis of V. anguillarum 相似文献
2.
Erdenechimegiyn Amar Koji Tadasa Hiromi Fujita Hiroshi Kayahara 《Biotechnology letters》2000,22(4):295-300
During the synthesis of the dipeptide, N-benzyloxycarbonyl-l-phenylalanyl-l-phenylalanine methyl ester, from N-benzyloxycarbonyl-l-phenylalanine and l-phenylalanine methyl ester by thermolysin, the enzyme was stabilized by 20°C up to 110°C. The stabilization was caused by the interaction of the enzyme with Phe-OMe, a counterpart of the substrate, which was bound at the enzyme active site due to the drop in pH and dielectric constant following the temperature elevation of the medium. The binding of the enzyme to Phe-OMe suggested the induction of the transition state formation at around 80°C based on the UV spectra, resulting in the increase in the stability in the higher temperature region. The fluorescence second-order derivative spectra suggested that the binding Phe-OMe interacted with Trp 115 at the active site of the enzyme. The phenomenon was considered to be a novel stabilization pattern of the enzyme resulting from the conduction due to the chemical modification by the binding substrate. 相似文献
3.
Shieh HS Tomasselli AG Mathis KJ Schnute ME Woodard SS Caspers N Williams JM Kiefer JR Munie G Wittwer A Malfait AM Tortorella MD 《Protein science : a publication of the Protein Society》2011,20(4):735-744
A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles. 相似文献
4.
Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method. 总被引:1,自引:1,他引:0 下载免费PDF全文
Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin. 相似文献
5.
The molecular diagnosis of prion diseases almost always involves the use of a protease to distinguish PrPC from PrPSc and invariably the protease of choice is proteinase K. Here, we have applied the protease thermolysin to the diagnosis of
animal prion diseases. This thermostable protease cleaves at the hydrophobic residues Leu, Ile, Phe, Val, Ala and Met, residues
that are absent from the protease accessible aminoterminal region of PrPSc. Therefore, although thermolysin readily digests PrPc into small protein fragments, full-length PrPSc is resistant to such proteolysis. This contrasts with proteinase K digestion where an aminoterminally truncated PrPSc species is produced, PrP27–30. Thermolysin was used in the diagnosis of ovine scrapie and bovine spongiform encephalopathy and produced comparable assay
sensitivity to assays using proteinase K digestion. Furthermore, we demonstrated the concentration of thermolysin-resistant
PrPSc using immobilized metal-affinity chromatography. The use of thermolysin to reveal a full-length PrPSc has application for the development of novel immunodiagnostics by exploiting the wide range of commercially available immunoreagents
and metal affinity matrices that bind the amino-terminal region of PrP. In addition, thermolysin provides a complementary
tool to proteinase K to allow the study of the contribution of the amino-terminal domain of PrPSc to disease pathogenesis. 相似文献
6.
P. Polverino de Laureto E. Scaramella V. De Filippis M. Bruix M. Rico A. Fontana 《Protein science : a publication of the Protein Society》1997,6(4):860-872
We have examined the proteolysis of bovine pancreatic ribonuclease A (RNase) by thermolysin when dissolved in aqueous buffer, pH 7.0, in the presence of 50% (v/v) trifluoroethanol (TFE). Under these solvent conditions, RNase acquires a conformational state characterized by an enhanced content of secondary structure (helix) and reduced tertiary structure, as given by CD measurements. It was found that the TFE-resistant thermolysin, despite its broad substrate specificity, selectively cleaves the 124-residue chain of RNase in its TFE state (20-42 degrees C, 6-24 h) at peptide bond Asn 34-Leu 35, followed by a slower cleavage at peptide bond Thr 45-Phe 46. In the absence of TFE, native RNase is resistant to proteolysis by thermolysin. Two nicked RNase species, resulting from cleavages at one or two peptide bonds and thus constituted by two (1-34 and 35-124) (RNase Th1) or three (1-34, 35-45 and 46-124) (RNase Th2) fragments linked covalently by the four disulfide bonds of the protein, were isolated to homogeneity by chromatography and characterized. CD measurements provided evidence that RNase Th1 maintains the overall conformational features of the native protein, but shows a reduced thermal stability with respect to that of the intact species (-delta Tm 16 degrees C); RNase Th2 instead is fully unfolded at room temperature. That the structure of RNase Th1 is closely similar to that of the intact protein was confirmed unambiguously by two-dimensional NMR measurements. Structural differences between the two protein species are located only at the level of the chain segment 30-41, i.e., at residues nearby the cleaved Asn 34-Leu 35 peptide bond. RNase Th1 retained about 20% of the catalytic activity of the native enzyme, whereas RNase Th2 was inactive. The 31-39 segment of the polypeptide chain in native RNase forms an exposed and highly flexible loop, whereas the 41-48 region forms a beta-strand secondary structure containing active site residues. Thus, the conformational, stability, and functional properties of nicked RNase Th1 and Th2 are in line with the concept that proteins appear to tolerate extensive structural variations only at their flexible or loose parts exposed to solvent. We discuss the conformational features of RNase in its TFE-state that likely dictate the selective proteolysis phenomenon by thermolysin. 相似文献
7.
Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me). 相似文献
8.
Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity 下载免费PDF全文
Rasia RM Ceolín M Vila AJ 《Protein science : a publication of the Protein Society》2003,12(7):1538-1546
Metallo-beta-lactamases are zinc enzymes able to hydrolyze the four-membered ring of beta-lactam antibiotics, representing one of the latest generations of beta-lactamases. These enzymes belong to the zinc metallo-hydrolase family of the beta-lactamase fold. Enzymes belonging to this family have a bimetallic active site whose structure varies among different members by point substitutions of the metal ligands. In this work, we have grafted new metal ligands into the metal binding site of BcII from Bacillus cereus that mimic the ligands present in other members of this superfamily. We have characterized spectroscopically and modeled the structure of the redesigned sites, which differ substantially from the wild-type enzyme. Despite the changes introduced in the active site, the mutant enzymes retain almost full activity. These results shed some light on the possible evolutionary origin of these metalloenzymes. 相似文献
9.
The details of the pH dependence of the thermodynamic and magnetic interactions of the active-site region of thermolysin in which manganese has replaced the active-site zinc atom and the inhibitor N-trifluoroacetyl-D-phenylalanine have been examined. These show a number of ionizable groups in the active-site region. A cooperative displacement of manganese at the catalytic site is observed as pH is lowered. This appears to be the result of the protonation of histidine-142 and -146 which act as metal ligands. The metal is 50% displaced at pH 6.0. At higher pH values, the environment of the bound manganese changes as a result of the ionization of at least two groups of approximate pKa = 8.5 and 9.5. These values are assigned to tyrosine-157 and to the water molecule which acts as a metal ligand at the active site. The binding behavior of the inhibitor strongly suggests that two molecules of inhibitor bind to the enzyme. The weaker site is competitive with the synthetic substrate FAGLA (furylacryloylglycyl-leucinamide), while the strong site has no effect on FAGLA hydrolysis. This second site is in the vicinity of the active site with a distance of 8 A or less between the trifluoromethyl group and manganese bound at the active site. 相似文献
10.
The point of maximum activity is specific to a particular substrate-enzyme system but may vary with different substrates and the same enzyme. The specificity of enzymes has, however, been generally reported only at their "optimal" pH. In this article, we introduce the Michaelis-Menten equation taking pH into account, and apply it to the pH-activity profile of the thermolysin-catalyzed dipeptide synthesis. It has been reported to date that the pH-activity profile of thermolysin follows a bell-shaped curve with a maximal activity at or near pH 7.0. The profiles obtained in this study, however, indicated that the optimal pH varied from 5.8 (for F-AspPheOMe) to 7.3 (for Z-ArgPheOMe), and the order of thermolysin activity was greatly dependent on the pH of reaction media. We have succeeded in evaluating the substrates-induced change of the dissociation states of the active site of thermolysin using the hydrophobicity of substrates. We have obtained apparent kinetic parameters which are independent of the pH of reaction media. The apparent specificity of thermolysin which were independent of pH of the reaction media was in order L-Leu > L-Asp > L-Arg > L-Ala > L-Gly > L-Val and Z > Boc = F at P1 and P2 positions, respectively. 相似文献
11.
Vimbai Samukange Masayuki Kamo Kiyoshi Yasukawa 《Bioscience, biotechnology, and biochemistry》2013,77(9):1522-1528
Neutral salts activate and stabilize thermolysin. In this study, to explore the mechanism, we analyzed the interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and thermolysin by ANS fluorescence. At pH 7.5, the fluorescence of ANS increased and blue-shifted with increasing concentrations (0–2.0?μM) of thermolysin, indicating that the anilinonaphthalene group of ANS binds with thermolysin through hydrophobic interaction. ANS did not alter thermolysin activity. The dissociation constants (Kd) of the complex between ANS and thermolysin was 33?±?2?μM at 0?M NaCl at pH 7.5, decreased with increasing NaCl concentrations, and reached 9?±?3?μM at 4?M NaCl. The Kd values were not varied (31?34?μM) in a pH range of 5.5?8.5. This suggests that at high NaCl concentrations, Na+ and/or Cl– ions bind with thermolysin and affect the binding of ANS with thermolysin. Our results also suggest that the activation and stabilization of thermolysin by NaCl are partially brought about by the binding of Na+ and/or Cl– ions with thermolysin. 相似文献
12.
Thermolysin is remarkably activated in the presence of high concentrations (1-5 M) of neutral salts [Inouye, K. (1992) J. Biochem. 112, 335-340]. The activity is enhanced 13-15 times with 4 M NaCl at pH 7.0 and 25 degrees C. Substitution of the active site zinc with other transition metals alters the activity of thermolysin [Holmquist, B. and Vallee, B.L. (1974) J. Biol. Chem. 249, 4601-4607]. Cobalt is the most effective among the transition metals and doubles the activity toward N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide. In this study, the effect of NaCl on the activity of cobalt-substituted thermolysin was examined. Cobalt-substituted thermolysin, with 2.8-fold increased activity compared with the native enzyme, is further activated by the addition of NaCl in an exponential fashion, and the activity is enhanced 13-15 times at 4 M NaCl. The effects of cobalt-substitution and the addition of salt are independent of each other. The activity of cobalt-substituted thermolysin, expressed as k(cat)/K(m), is pH-dependent and controlled by at least two ionizing residues with pK(a) values of 6.0 and 7.8, the acidic pK(a) being slightly higher compared to 5.6 of the native enzyme. These pK(a) values remain constant in the presence of 4 M NaCl, indicating that the electrostatic environment of cobalt-substituted thermolysin is more stable than that of the native enzyme, the acidic pK(a) of which shifts remarkably from 5.6 to 6.7 at 4 M NaCl. Zincov, a competitive inhibitor, binds more tightly to the cobalt-substituted than to native thermolysin at pH 4.9-9.0, probably because of its preference for cobalt in the fivefold coordination. The cobalt substitution has been shown to be a favorable tool with which to explore the active-site microenvironment of thermolysin. 相似文献
13.
The preferred conformations of β-phenylpropionyl-l-phenylalanine (β-PPP) and (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site. 相似文献
14.
Nagayasu T Miyanaga M Tanaka T Sakiyama T Nakanishi K 《Biotechnology and bioengineering》1994,43(11):1118-1123
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the synthetic sweetner asparatame, was synthesized from N-(benzyloxycarbolyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methyl ester (PheOMe) with an immobilized thermolysin in various organic solvents. We found that in tert-amyl alcohol containing a small amount of water the immobilized enzyme showed a high activity comparble to that in ethyl acetate with quite a high stability. The immobilized enzyme was fully stable up to 70 degrees C in tert-amyl alcohol in the absence of the subatrate, and up to 50 degrees C in the presence of the substrate. The high stability in the presence of the substrate was found due to the fact that the release of calcium ions, the stabilizing factor of thermolysin, is suppressed.The substrate concentration dependence of the initial synthetic rate with the immobilized enzyme was quite different from that with the free enzyme in the biphasic system, in contrast to that in ethyl acetate. Finally, Z-AspPheOMe was continuously synthesized in a column reactor using 200 mM PheOMe and 120 mM Z-Asp as the substrate for over 300 h at 45 degrees C and a space velocity of 1 h(-1) without any loss of acivity. (c) 1994 John Wiley & Sons, Inc. 相似文献
15.
In a previous study, the small protein staphylococcal nuclease was shown to readily accommodate single alanine and glycine insertions, with average losses in stability comparable to substitutions at the same sites (PROT. 7:299-305, 1990). To more fully explore this unexpected adaptability to changes in residue spacing, 2 double amino acid insertions (alanyl-glycine, glycyl-glycine) and 3 additional single amino acid insertions with dissimilar side chains (proline, leucine, and glutamine) were constructed at 10 of the sites previously studied. At 8 of these sites, the type of amino acid side chain on the inserted residue significantly influenced the stability of the mutant protein. However, at 9 of the 10 sites, the double insertions were found to be no more destabilizing than the single alanine or glycine insertions. In contrast, double substitution mutations of staphylococcal nuclease, which replace two adjacent residues with alanine, do not show this striking degree of non-additivity. A comparison of the effects of single glutamine and single glycine insertions with alanyl-glycine insertions indicates that insertion of alanine into the peptide backbone is, on average, less destabilizing than appending the equivalent atoms onto the side chain of a glycine insertion. To explain their very different energetic effects, we propose that, unlike most substitutions, the inserted residue(s) must induce lateral displacements of the polypeptide chain, forcing the folded conformation away from that of wild type. The resulting obligatory shifts in the positioning of residues flanking the insertion generate a large number of degrees of freedom around which the mutant structure can relax.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Nagayasu T Miyanaga M Tanaka T Sakiyama T Nakanishi K 《Biotechnology and bioengineering》1994,43(11):1108-1117
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc. 相似文献
17.
The zinc hydrolase superfamily is a group of divergently related proteins that are predominantly enzymes with a zinc-based catalytic mechanism. The common structural scaffold of the superfamily consists of an eight-stranded beta-sheet flanked by six alpha-helices. Previous analyses, while acknowledging the likely divergent origins of leucine aminopeptidase, carboxypeptidase A and the co-catalytic enzymes of the metallopeptidase H clan based on their structural scaffolds, have failed to find any homology between the active sites in leucine aminopeptidase and the metallopeptidase H clan enzymes. Here we show that these two groups of co-catalytic enzymes have overlapping dizinc centers where one of the two zinc atoms is conserved in each group. Carboxypeptidase A and leucine aminopeptidase, on the other hand, no longer share any homologous zinc-binding sites. At least three catalytic zinc-binding sites have existed in the structural scaffold over the period of history defined by available structures. Comparison of enzyme-inhibitor complexes show that major remodeling of the substrate-binding site has occurred in association with each change in zinc ligation in the binding site. These changes involve re-registration and re-orientation of the substrate. Some residues important to the catalytic mechanism are not conserved amongst members. We discuss how molecules acting in trans may have facilitated the mutation of catalytically important residues in the active site in this group. 相似文献
18.
The role of 2' hydroxyl groups in the codon-anticodon helix was evaluated by introducing single deoxynucleotides into each of the six positions in the helix and measuring the affinity of tRNA to either the A site or the P site of Escherichia coli 70S ribosomes. In perfect agreement with the X-ray structure of the Thermus thermophilus 30S subunit, A site binding was weaker in five of the six positions but P site binding was unaffected. Since the addition of paromomycin restores A site binding, it appears that the deoxynucleotide substituted complexes are impaired in their ability to promote the ribosomal conformational change that accompanies tRNA binding. 相似文献
19.
N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester, a precursor of the synthetic sweetener, aspartame, was synthesized from N-(benzyloxycarbonyl)-L-aspartic acid and L-phenylalanine methyl ester with an immobilized thermolysin (EC 3.4.24.4) in the mixed organic solvent system of tert-amyl alcohol and ethyl acetate. A mixed solvent consisting of tert-amyl alcohol and ethyl acetate at a ratio of 33:67 (v/v) was found to be the most suitable with respect to synthetic rate and stability of the immobilized enzyme. The reaction continued to proceed quite successfully in a column reactor at 40 degrees C and at a space velocity of 3.6 h(-1) with a yield of 99%, using 40 mM Z-Asp and 200 mM PheOMe dissolved in the mixed solvent as the substrate. (c) 1995 John Wiley & Sons, Inc. 相似文献
20.
Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase 下载免费PDF全文
Chantalat L Duée E Galleni M Frère JM Dideberg O 《Protein science : a publication of the Protein Society》2000,9(7):1402-1406
Beta-lactamases are involved in bacterial resistance. Members of the metallo-enzyme class are now found in many pathogenic bacteria and are becoming thus of major clinical importance. Despite the availability of Zn-beta-lactamase X-ray structures their mechanism of action is still unclear. One puzzling observation is the presence of one or two zincs in the active site. To aid in assessing the role of zinc content in beta-lactam hydrolysis, the replacement by Ser of the zinc-liganding residue Cys168 in the Zn-beta-lactamase from Bacillus cereus strain 569/H/9 was carried out: the mutant enzyme (C168S) is inactive in the mono-Zn form, but active in the di-Zn form. The structure of the mono-Zn form of the C168S mutant has been determined at 1.85 A resolution. Ser168 occupies the same position as Cys168 in the wild-type enzyme. The protein residues mostly affected by the mutation are Asp90-Arg91 and His210. A critical factor for the activity of the mono-Zn species is the distance between Asp90 and the Zn ion, which is controlled by Arg91: a slight movement of Asp90 impairs catalysis. The evolution of a large superfamily including Zn-beta-lactamases suggests that they may not all share the same mechanism. 相似文献