首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P D Adams  P J Parker 《FEBS letters》1991,290(1-2):77-82
Threonine and tyrosine residue phosphorylation of a 42 kDa protein identified as mitogen-activated protein kinase (MAP kinase) was stimulated in extracts from TPA-pretreated cells. It is further shown that TPA pretreatment leads to the enhancement of an activity that will induce reactivation of dephosphorylated/inactivated MAP kinase. This TPA-induced activity induces the threonine and tyrosine phosphorylation of p42 in extracts from unstimulated cells.  相似文献   

2.
    
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

3.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   

4.
Abstract: Sodium- and chloride-coupled transport of dopamine from synapses into presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. Regulation of the function of the dopamine transporter, the molecule responsible for this translocation, is thus of interest. The primary sequence of the dopamine transporter contains multiple potential phosphorylation sites, suggesting that the function of the transporter could be regulated by phosphorylation. Previous work from this laboratory has documented that phorbol ester activation of protein kinase C (PKC) decreases dopamine transport V max in transiently expressing COS cells. In the present report, we document in vivo phosphorylation of the rat dopamine transporter stably expressed in LLC-PK1 cells and show that phosphorylation is increased threefold by phorbol esters. Dopamine uptake is also regulated by phorbol esters in these cells; phorbol 12-myristate 13-acetate (PMA) reduces transport V max by 35%. Parallels between the time course, concentration dependency, and staurosporine sensitivity of alterations in transporter phosphorylation and transporter V max suggest that dopamine transporter phosphorylation involving PKC could contribute to this decreased transporter function. Phosphorylation of the dopamine transporter by PKC or by a PKC-activated kinase could be involved in rapid neuroadaptive processes in dopaminergic neurons.  相似文献   

5.
    
  相似文献   

6.
Induction of expression and proteolytic breakdown of phospholipase D (PLD) isoforms in primary astrocyte cultures have been investigated. Astrocytes express both PLD1 and 2 and are dependent on PLD activity for cell proliferation [K. K?tter, J. Klein, J. Neurochem. 73 (1999) 2517]. Competitive RT-PCR analysis demonstrated a higher level of PLD1 mRNA than PLD2 mRNA (8.9 vs. 0.9amol/microg RNA, respectively). Treatment of astroglial cultures with the phorbol ester, 4beta-phorbol-12beta,13alpha-dibutyrate (0.1 microM), for 24-48h selectively induced PLD1b but not PLD1a or 2 expression as shown by PCR and Western blot; the effect was sensitive to G? 6976. In cells transiently permeabilized with streptolysin-O, antisense oligonucleotides directed against PLD1 or 2 entered the cytoplasm as shown by immunofluorescence experiments but did not affect astroglial proliferation within 2-6 days. Treatment of the cultures with cycloheximide revealed that PLD1 and 2 proteins had biological half-lives of 2-3 days (PLD2) and 4-6 days (PLD1), respectively. It has been concluded that astroglial PLD1b is up-regulated by phorbol esters via protein kinase C activation. Down-regulation of PLD isoforms is prevented by extended biological half-lives of the PLD proteins.  相似文献   

7.
Abstract: Neurotransmission at excitatory glutamatergic synapses is terminated by the reuptake of the neurotransmitter by high-affinity transporters, which keep the extracellular glutamate concentration below excitotoxic levels. The amino acid sequence of the recently isolated and cloned brain-specific glutamate/aspartate transporter (GLAST-1) of the rat reveals three consensus sequences of putative phosphorylation sites for protein kinase C (PKC). The PKC activator phorbol 12-myristate 13-acetate (PMA) decreased glutamate transport activity in Xenopus oocytes and human embryonic kidney cells (HEK293) expressing the cloned GLAST-1 cDNA, within 20 min, to 25% of the initial transport activity. This down-regulation was blocked by the PKC inhibitor staurosporine. GLAST-1 transport activity remains unimpaired by phorbol 12-monomyristate. Removal of all putative PKC sites of wild-type GLAST-1 by site-directed mutagenesis did not abolish inhibition of glutamate transport. [32P]Phosphate-labeled wild-type and mutant transport proteins devoid of all predicted PKC sites were detected by immunoprecipitation after stimulation with PMA. Immunoprecipitation of [35S]methionine-labeled transporter molecules indicates a similar stability of phosphorylated and nonphosphorylated GLAST-1 protein. Immunofluorescence staining did not differentiate surface staining of HEK293 cells expressing GLAST-1 with and without PMA treatment. These data suggest that the neurotransmitter transporter activity of GLAST-1 is inhibited by phosphorylation at a non-PKC consensus site.  相似文献   

8.
There is uncertainty in the literature regarding the number and location of fibronectin binding sites on denatured collagen. Although most attention has focused on a single site near the collagenase-sensitive region of each alpha chain, there is evidence for additional sites in other regions. We treated bovine type I collagen with cyanogen bromide, labeled the resulting mixture with fluorescein, and separated the peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fluorescent bands were excised from the gel and dialyzed exhaustively to remove detergent. Titration of eight distinct fluorescent-labeled fragments with the 42-kDa gelatin-binding fragment of fibronectin caused increases in anisotropy that were fully reversible with unlabeled gelatin. By fitting the dose responses it was possible to calculate apparent K(d)'s whose values ranged between 1 and 4 microM. The largest fragment, alpha(2)-CB3,5, composing about 2/3 of the alpha(2) chain, when further digested with endoproteinase Lys-C, yielded at least three additional subfragments that also bound with similar affinities. Thus, there appear to be at least 14 distinct fibronectin binding sites of similar affinity in bovine type I collagen, five on each of the alpha(1) chains and four on the alpha(2) chain. Experiments with several synthetic peptides failed to reveal the exact nature of the binding site.  相似文献   

9.
The effect of phorbol esters on cyclic AMP production in rat CNS tissue was examined. Using a prelabeling technique for measuring cyclic AMP accumulation in brain slices, it was found that phorbol 12-myristate, 13-acetate (PMA) enhanced the cyclic AMP response to forskolin and a variety of neurotransmitter receptor stimulants while having no effect on second messenger accumulation itself. A short (15-min) preincubation period with PMA was required to obtain maximal enhancement, whereas the augmentation was lessened by prolonged exposure (3 h) to the phorbol. The response to PMA was concentration dependent (EC50 = 1 microM) and regionally selective, being most apparent in forebrain, and was not influenced by removal of extracellular calcium or by inhibition of phosphodiesterase or phospholipase A2. Only those phorbols known to stimulate protein kinase C augmented the accumulation of cyclic AMP. Moreover, the membrane substrates phosphorylated by endogenous C kinase and by a partially purified preparation of this enzyme were similar. The results suggest that phorbol esters, by activating protein kinase C, modify the cyclic AMP response to brain neurotransmitter receptor stimulation in brain by influencing a component of the adenylate cyclase system beyond the transmitter recognition site.  相似文献   

10.
Tumour-promoting phorbol esters (phorbol-12-myristate-13-acetate, PMA; phorbol-12,13-dibutyrate, PDBu) but not 4β-phorbol, activate protein kinase C. Using human platelets pre-labelled with quin2 or 32PO4 we examined the effects of these compounds on human platelet cytosolic free Ca2+ ([Ca2+]j) and on [32]phosphatidic acid ([32P]PtdOH). PMA and PDBu, but not 4β-phorbol inhibited thrombin-, PAF- and vasopressin-induced elevation of [Ca2+], and [2+P]PtdOH formation. It is suggested that protein kinase C may act to terminate the transduction processes that link receptor occupancy to cellular activation.  相似文献   

11.
12.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
100nmol/L佛波酯(12-O-tetradecanoylphobol-13-acetate,TPA)能明显促进NIH3T3细胞在纤连蛋白(Fn)上的铺展,该作用能分别被酪氨酸激酶(tyrosinekinase,TK)抑制剂4′,5,7-三羟基异黄酮(genistein)和蛋白激酶C(proteinkinaseC,PKC)抑制剂calphostinC和神经鞘氨醇(sphingosine)所抑制.TPA作用于结合到Fn上的NIH3T3细胞,使其聚焦粘附激酶(focaladhe-sionkinase,FAK)的酪氨酸磷酸化程度较未处理细胞升高,于30min时达对照的204.0%,并存在浓度依赖性;该变化分别被上述抑制剂所拮抗;未经TPA处理的NIH3T3细胞和纤连蛋白结合诱导的FAK酪氨酸磷酸化亦分别被上述抑制剂所抑制.细胞松弛素D则无论TPA作用与否,都能完全阻断NIH3T3细胞的铺展和FAK的酪氨酸磷酸化.以上结果提示,TPA促进NIH3T3细胞在Fn上铺展的信号转导机制,与PKC的激活有关,进一步则可能通过影响FAK的酪氨酸磷酸化来实现,同时需要细胞骨架的参与;NIH3T3细胞和Fn结合并诱导FAK酪氨酸磷酸化的过程亦依赖于PKC和完整的细胞骨架.  相似文献   

14.
Abstract: The injection of phorbol esters into the eyes of dark-adapted teleost fish can mimic light effects in the retina and induces corresponding synaptic plasticity of horizontal cells (HCs). It is therefore very likely that protein kinase C (PKC) mediates light-induced synaptic plasticity. In the present study, we investigated the distribution of PKC, the phorbol ester receptor, in isolated HCs and in the whole retina by using tritiated phorbol 12,13-dibutyrate ([3H]PDBu). The binding characteristics analyzed for HC homogenates and retinal homogenates revealed that [3H]PDBu binding is time dependent, specific, saturable, and reversible. Binding sites in HCs displayed a dissociation constant of 11.5 n M and a total number of 2.8 pmol/mg of protein. Autoradiography revealed that [3H]PDBu labeling is present in all retinal layers, including HCs, where it is associated with the somata. Furthermore, the treatment with PDBu strongly affected the endogenous phosphorylation of several membrane, cytosolic, and HC proteins and led to PKC activation as measured by H1 histone phosphorylation. In HCs, the treatment with PDBu in particular affected the amount of 32P incorporated into a group of phosphoproteins (68, 56/58, 47, 28, and 15 kDa) that were recently shown to be affected by light adaptation. These proteins might therefore be considered as important components of the observed morphological and physiological synaptic plasticity of HCs in the course of light adaptation.  相似文献   

15.
蛋白激酶C在血小板聚集中的作用   总被引:4,自引:0,他引:4  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

16.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

17.
Abstract: The effect of protein kinase C (PKC) activation on maximal kainate (KA)-induced currents was studied in Xenopus oocytes expressing the glutamate receptor (GluR) subunits GluR3, GluR1+3, GluR2+3, and GluR6. The PKC activator phorbol 12- myristate 13-acetate (PMA) inhibited peak KA responses in a time-dependent manner. The magnitude of inhibition was greatest in GluR6-expressing oocytes. Desensitizing KA currents characterized by a peak, transient current followed by a slower, desensitizing current were observed in oocytes expressing GluR3 and GluR 1+3 receptors. PMA inhibited the desensitization, and this effect could be observed before PMA's inhibition of peak current amplitude. PMA-mediated inhibition of both desensitization and peak current amplitude was prevented by intracellular injection of the protein kinase C (PKC) inhibitor peptide. These results suggest that the function of GluRs is regulated by PKC-dependent phosphorylation  相似文献   

18.
Human neuronal brain cultures established from 12- and 14-week-old fetuses synthesize and secrete urokinase-type plasminogen activator (uPA) and limited amounts of tissue-type plasminogen activator (tPA). These cells also produce and secrete the endothelial cell-type PA inhibitor (PAI-1), which forms sodium dodecyl sulfate-stable tPA/PAI-1 complexes in the culture medium. Immunocytochemistry shows a predominant localization of uPA, tPA, and PAI-1 in neuronal cells, with only a very weak positivity detectable in the few glial cells present in these cultures. The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulates the synthesis of both uPA and PAI-1, resulting in a final increase in the plasmin-generating capacity of neuronal cell cultures. No significant effect is observed, however, when cells are treated with the TPA analogue 4 alpha-phorbol 12,13-didecanoate, which is inactive as a PKC inducer, or with the neurotrophic polypeptide basic fibroblast growth factor. These data represent the first characterization of the plasmin-generating system in human fetal brain neurons and suggest a role for PKC in the modulation of uPA and PAI-1 synthesis.  相似文献   

19.
Previous results from our laboratory suggest that long-term treatment of primary cultured bovine adrenal medullary (BAM) chromaffin cells with nicotine or phorbol 12-myristate 13-acetate, either of which directly activates protein kinase C (PKC), increases the mRNA levels encoding catecholamine-synthesizing enzymes and proenkephalin. In the present study, we have examined the effects of nicotine on BAM cell PKC activity with special emphasis on long-term effects. Nicotine increased particulate PKC activity in a concentration-dependent manner when measured using in vitro enzyme assay with histone as the substrate. This effect is mediated through nicotinic cholinergic receptors, because 1,1-dimethylphenylpiperazinium, a nicotinic agonist, had a similar effect. In addition, chlorisondamine, a specific nicotine-receptor blocking drug, antagonized the effect of nicotine. Nicotine also increased specific [3H]phorbol 12,13-dibutyrate ([3H]PdBu) binding within 1 min, the effect of which was maximal between 3 and 12 min. This effect was reversed by chlorisondamine similarly after 12 min and after 18 h of nicotine treatment, indicating that continual nicotinic-receptor occupancy is required for persistent PKC activation. Compared to PKC activation, the onset of nicotine-stimulated diacylglycerol production was slow, and it was observed after 12 min of incubation with nicotine. The diacylglycerol levels, specific [3H]PdBu binding, and PKC activity remained significantly elevated for at least 18 h with continuous nicotine incubation. Furthermore, nicotine increased the PKC immunoreactivity of a particulate protein with a molecular mass of 82 kDa in the western blot. These results suggest that nicotinic-receptor activation increases PKC activity and immunoreactivity in BAM cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Primary cultures of bovine adrenal chromaffin cells contain neurofilament proteins that are hypophosphorylated. When the cells were grown in medium containing 32Pi and 0.1 microM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), 32P-labelling of the three neurofilament subunits was increased 6- to 20-fold relative to controls, the highest level of stimulation occurring for the mid-sized subunit. Addition of the protease inhibitor leupeptin to the growth medium had no effect on TPA-stimulated phosphorylation. The increased 32P incorporation was accompanied by a marked reduction in the gel electrophoretic mobilities of the two largest subunits. The augmented phosphorylation was observed 10 min after addition of TPA to a concentration of 0.1 microM or after 1 h of incubation in the presence of 0.01 microM TPA. One-dimensional peptide mapping and phosphoamino acid analysis indicated that TPA stimulated the phosphorylation of seryl residues at new sites in the mid-sized subunit. All of the latter subunit contained in the cytoskeletal fraction of chromaffin cells was converted to a more highly phosphorylated state after the cells were grown in the presence of TPA for 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号