首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W.J. SIMPSON AND A.R.W. SMITH. 1992. The antibacterial effect of weak acids derived from the hop plant ( Humulus lupulus L.) increased with decreasing pH. Analysis of the minimum inhibitory concentration of such compounds against Lactobacillus brevis IFO 3960 over pH4–7 suggests that undissociated molecules were mainly responsible for inhibition of bacterial growth. The antibacterial activity of trans -isohumulone was ca 20 times greater than that of humulone, 11 times greater than that of colupulone and nine times greater than that of trans -humulinic acid when the degree of ionization was taken into account. Monovalent cations (K+, Na+, NH4+, Rb+, Li+) stimulated antibacterial activity of trans -isohumulone but the effect was smaller than that observed with H+. The response to divalent cations varied: Ca2+ had little effect on antibacterial activity, whereas Mg2+ reduced activit. Lipid materials and β-cyclodextrin also antagonized the antibacterial action of trans -isohumulone.  相似文献   

2.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

3.
The activity of chicken liver mevalonate 5-diphosphate decarboxylase was measured over a wide range of Mg2+ and ATP concentrations. It was found that free ATP activated the enzyme, whereas free Mg2+ had no effect on the enzyme activity. Computed analyses of free species concentrations and pH studies indicated that MgATP2- is the true substrate. The relative efficiencies of Mg2+, Mn2+, Cd2+, and Zn2+ as activating metal ions were evaluated in terms of V/Km for the corresponding (metal-ATP)2- complexes, and the relative ratios were: Mn2+ 100, Cd2+ 37, Mg2+ 14, Zn2+ 1.7. Inhibitory effects were demonstrated for all free divalent cations tested, except for Mg2+, and were in the order Zn2+ greater than Cd2+ greater than Mn2+.  相似文献   

4.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

5.
Cation dependence of restriction endonuclease EcoRI activity   总被引:3,自引:0,他引:3  
Restriction endonuclease EcoRI cleaves the DNA sequence 5'd(-G-A-A-T-T-C-) under optimum digestion conditions. A variation in pH and ionic strength can result in EcoRI activity when 5'd(-A-A-T-T-) is cut. A divalent cation, usually Mg2+, is required for enzyme activity, though Mn2+ can also be used. Eight different cations with ionic radius/charge ratios similar to Mg2+ were tested and Co2+ and Zn2+ were also found to act as cofactors for EcoRI. A comprehensive study has been made of the effect of NaCl and pH on the EcoRI/EcoRI transition in the presence of the above four cations. Generally, a decrease in NaCl and/or an increase in pH caused a decrease in enzyme specificity. The changeover depended on the cation. They may be placed in order of their ability to increase EcoRI specificity thus: Co2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. The Km of EcoRI for ColE1 DNA, in the presence of Co2+, was found to be 0.4 nM, compared to 3 nM with Mg2+, whereas the turnover was only one double-stranded scission/min with Co2+ compared to eight/min with Mg2+. The implications of all these findings on the enzyme's mechanism are discussed.  相似文献   

6.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

7.
Acetylcholinesterase (AChE) activity was determined at varied pH values between 6 and 11 in rat homogenated diaphragm and in eel E. electricus soluble AChE, in the presence or absence of 115 mM NaCl or LiCl. It was observed that by using homogenated diaphragm Li+ stimulated AChE at physiological pH (7-7.4). In control (no cations) a pH "optimum" of 8.6-9 was found, while in presence of NaCl or LiCl "optima" of 9.5 and 10.2 were observed respectively. At optimum pH, AChE activity was about 2 times higher with NaCl, while with LiCl 5 times higher than the control. Preincubation of the enzyme or the homogenate in cations presence at pH 5.5 or pH 12.8 had no effect on the activity, when it was measured at pH "optima". However, without cations only 76% of the activity in optimum pH after preincubation at pH 5.5 was found. These results suggest that: (a) Li+ may neutralize negative charges of AChE more successfully than Na+, resulting in better enzyme activation and stabilization; (b) a possible enzyme desensitization induced by pH changes can be avoided by increasing Na+ concentrations and especially Li+.  相似文献   

8.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

9.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

10.
The interactions between alpha-latrotoxin (alpha-LTx), a neurosecretagogue purified from the venom of the black widow spider, and the trivalent cations Al3+, Y3+, La3+, Gd3+, and Yb3+ were investigated in rat striatal synaptosomal preparations. All trivalent cations tested were inhibitors of alpha-LTx-induced [3H]dopamine [( 3H]DA) release (order of potency: Yb3+ greater than Gd3+ approximately Y3+ greater than La3+ greater than Al3+). Only with Al3+ could inhibition of [3H]DA release be attributed to a block of 125I-alpha-LTx specific binding to synaptosomal preparations. The inhibitory effect of trivalent ions was reversible provided synaptosomes were washed with buffer containing EDTA. Trivalent ions also inhibited alpha-LTx-induced [3H]DA release at times when alpha-LTx-stimulated release was already evident. alpha-LTx-induced synaptosomal membrane depolarization was blocked by La3+, but not affected by Gd3+, Y3+, and Yb3+. alpha-LTx-stimulated uptake of 45Ca2+ was inhibited by all trivalent cations tested. These results demonstrate that there exist at least three means by which trivalent cations can inhibit alpha-LTx action in rat striatal synaptosomal preparations: (1) inhibition of alpha-LTx binding (Al3+); (2) inhibition of alpha-LTx-induced depolarization (La3+); and (3) inhibition of alpha-LTx-induced 45Ca2+ uptake (Gd3+, Y3+, Yb3+, La3+).  相似文献   

11.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The DNAase in human urine was purified about 30-fold with a recovery of 28%. This involved DEAE-cellulose and phosphocellulose chromatography steps and gel filtration on Sephadex G-75. The enzyme required divalent cations such as Co2+, Mg2+, Mn2+ and Zn2+ for activity, but Ca2+, Cu2+ and Fe2+ were ineffective. EDTA and G-actin inhibited the reaction. The maximum activity was observed at pH 5.5 in acetate buffer plus Co2+ or Mg2+ and Ca2+. It had a molecular weight of approximately 38 000, estimated by gel filtration on Sephadex G-75 and isoelectric point of around pH 3.9. The enzyme is an endonuclease which hydrolyzes native, double-stranded DNA about 3 to 4 times faster than thermally denatured DNA to produce 5'-phosphoryl- and 3'-hydroxyl-terminated oligonucleotides. The final preparation was free of non-specific acid and alkaline phosphatases, phosphodiesterase and ribonuclease activities.  相似文献   

13.
The pH within isolated Triton WR 1339-filled rat liver lysosomes was determined by measuring the distribution of [14C]methylamine between the intra- and extralysosomal space. The intralysosomal pH was found to be approximately one pH unit lower than that of the surrounding medium. Increasing the extralysosomal cation concentration lowered the pH gradient by a cation exchange indicating the presence of a Donnan equilibrium. The lysosomal membrane was found to be significantly more permeable to protons than to other cations. The relative mobility of cations through the lysosomal membrane is H+ greater than Cs+ greater than Rb+ greater than K greater than Na+ greater than Li+ greater than Mg2+, Ca2+. The presented data suggest that the acidity within isolated Triton WR 1339-filled lysosomes is maintained by: (1) a Donnan equilibrium resulting from the intralysosomal accumulation of nondiffusible anions and (2) a selective permeability of the lysosomal membrane to cations.  相似文献   

14.
The effects of bivalent (Mg2+, Ca2+, Sr2+) and monovalent (K+, Na+, NH4+) cations on the ATPase activity of subfragment 1 of myosin (SI) with a decreased Mg2+ content (EDTA-SI) were studied. Mg2+ activate the EDTA-SI ATPase, but only in the absence of other activating cations. K+, NH4+, a2+ and Sr2+ have a much stronger activating effect on EDTA-SI ATPase than on Mg-SI (SI enriched with Mg2+) ATPase. Monovalent cations inhibit Mg2+-ATPase and Ca2+-ATPase of EDTA-SI, while K+ and NH4+ activate Sr2+-ATPase of EDTA-SI. Based on experimental results and literary data, a hypothesis on the participation of the cations in the functioning of myosin ATPase was postulated. This hypothesis entails the existence of two closely interconnected cation-binding sites in the vicinity of the myosin active center (one for bivalent and one for monovalent cations); the ATPase activity of myosin is at any moment dependent on the nature of cations present in these two sites. An attempt to explain the role of the cations in the accomplishment of the ATPase reaction by myosin was made.  相似文献   

15.
本研究首次发现冬虫夏草发酵菌丝体含有较高活力的γ-谷氨酰转肽酶(简称CSGT),并且通过硫酸铵分级沉淀、疏水层析、凝胶过滤层析、阴离子交换层析和制备电泳的提取纯化程序,将CSGT纯化了2300倍,然后对CSGT的基本酶学性质进行了研究。CSGT的稳定pH范围和温度范围分别为pH8-11和0-20℃, 当pH 9-10 、30℃并且以L-谷氨酸-对-硝基苯胺(简称GpNA)和双甘肽为底物时CSGT的活力达到最大值。几种还原剂均能激活CSGT,说明其活性中心含有巯基。Zn2+, Cu2+, Hg2+ , Mn2+ 等金属离子均强烈抑制CSGT活性,而K+, Ca2+, Mg2+ 和Na+等对CSGT活性没有影响。  相似文献   

16.
cGMP-dependent protein kinase from bovine lung has been purified to homogeneity using 8-(2-aminoethyl)-amino adenosine 3':5'-monophosphate/Sepharose. Conditions for adsorption of holoenzyme to the affinity chromatography media followed by competitive ligand elution with cGMP have been determined. The holoenzyme of 150,000 molecular weight is composed of two 74,000 molecular weight subunits which are linked in part by disulfide bridges. Two moles of cGMP are bound per mol of holoenzyme compatible with 1 mol of cGMP/monomer. Dissociation of subunits does not occur upon cGMP binding and protein kinase activation. cGMP-dependent protein kinase has an isoelectric point of 5.4 and a Stokes radius of 50 A. The enzyme is asymmetric with an f/f0 of 1.42 and an axial ratio of 7.4. Determination of enzyme activity at varying concentrations of ATP revealed that cGMP increased the Vmax for ATP without significant effect on the Km. The purified enzyme was maximally active at 5 mM Mg2+; other divalent cations could not substitute for Mg2+. In the presence of Mg2+, strong inhibitory effects of other cations were observed with Mn2+, greater than Zn2+, greater than Co2+ greater than Ca2+. Although maximal cGMP-dependence was observed at pH 5.7 to 7.0, basal activity rose at higher pH values to approach activity observed with cGMP. A molecular model comparing cGMP-dependent protein kinase with cAMP-dependnet protein kinase is presented.  相似文献   

17.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

18.
The activity of membrane Na+, K+ -ATPase of embryos of loach (Misgurnus fossilis L.) at early stages of development in the normal conditions and under the influence of heavy metal cations has been investigated. It was established, that the influence of such heavy metal cations as Ni2+, Co2+, Sn2+, Zn2+, Mn2+ and Cd2+ in concentrations 10(-6) - 10(-4) M results in reduction of activity of membrane Na+, K+ -ATPase of loach embryos. It was shown, that the inhibition effect is more expressed with the increase of concentrations of heavy metal cations in the incubation medium. The definition of inhibition constants Io.5 has allowed to analyze the sensitivity of Na+, K+ -ATPase to influence of various cations of heavy metals at different stages of blastomer division. Possible mechanisms of influence of heavy metal cations on the activity of membrane Na+, K+ -ATPase of loach embryos have been considered.  相似文献   

19.
20.
1. The activities of cyclic cytidine 3',5'-monophosphate (cCMP) phosphodiesterase in normal rat liver and host liver (bearing hepatoma 5123 t.c.(h)) were compared with those of three Morris hepatomas of varying growth rates. 2. The results show that the order of enzyme activity was as follows: normal liver = host liver greater than 7794A (slow growth rate) greater than 5123 t.c.(h) (intermediate growth rate) greater than 7800 (fast growth rate). 3. The enzyme had a pH optimal value of about 7.0 and an apparent Km for cCMP about 2.8 mM; its activity was slightly affected by the presence of calmodulin (100 micrograms/ml) and/or CaCl2 (100 microM), but showed variable responses to other cations (La3+, Mg2+, Mn2+, Zn2+, Fe2+, Na+ and K+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号