首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Electrogenic cells ofChara braunii andNitella flexilis were placed in a pulse-modulated radio-frequency electric field of up to 6000 V/m. Their vacuolar resting potentials were found to experience submillivoltdepolarizing offsets (typically 140 V at 250 kHz) which were relatively indepencent of temperature, increased linearly with resting potential from a zero near –210mV, and had a cutoff (putatively due to ion transit times) near 5 MHz. By contrast, nonelectrogenic cells experiencedhyperpolarizing offsets (typically 1100 V at 250 kHz) which increased in magnitude with increasing temperature, were independent of resting potential, and had a transit time cutoff near 10 MHz.The ionic mobilities inferred from these cutoff frequencies are somewhat higher than would be expected for active transport and presumably reflect passive conductance mechanisms which therefore must be presumed different for the electrogenic and nonelectrogenic states.  相似文献   

2.
Microwave exposure (2450 MHz, 60 mW/g, CW) of rabbit erythrocytes increases Na passive transport only at membrane phase transition temperatures (Tc) of 17–19°C. This permeability effect is enhanced for relative hypoxia which is characteristic of intracellular oxygen tension (pO2 ? 5 mm Hg). Neither the permeability nor the pO2 effects are observed in temperature-matched (± 0.05°C), sham-exposed controls. In addition, at Tc, microwave exposure is observed to induce the shedding or release of two erythrocyte proteins not seen in sham-exposed controls. Moreover, the enhanced shedding of at least seven other proteins all of molecular weight ? 28,000 D was detected in the microwave-treated samples. Using sensitive silver staining we estimate that approximately 450 fg of protein were shed per erythrocyte. These results demonstrate that temperature and pO2 are important influences on both functional and structural responses of cell membranes to microwave radiation.  相似文献   

3.
The effect of weak extremely-low-frequency (ELF) magnetic fields (sinusoidal, 30 μT amplitude) on the genome conformational state (GCS) of E. coli mutant and wild type cells was studied by using the method of anomalous viscosity time dependency (AVTD) in the 6–37 Hz frequency range. We confirmed the existence of three resonance frequencies of 8.9, 15.5, and 29.4 Hz when mutant cells of K12 AB1157 strain were exposed. In the same frequency range, the wild type K12 EMG2 cells displayed only two effective windows, with resonance frequencies of 8.3 and 27 Hz. The resonance frequencies differed significantly (P < .001–.000001) in the strains studied, whereas other resonance parameters did not. It was concluded that mutations in the AB1157 strain resulted in a significant rearrangement in the ELF action spectrum, including the appearance of a new resonance. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The stretch-induced increase in force production of ventricular muscle is biphasic. An abrupt increase in force coincides with the stretch, which is then followed by a slower response that develops over minutes (the slow force response or SFR). The SFR is accompanied by a slow increase in the magnitude of the intracellular Ca2+ transient, but the stretch-dependent mechanisms that give rise to this remain controversial. We characterized the SFR using right ventricular trabeculae from mouse hearts. Application of three different blockers of stretch-activated non-selective cation channels (SAC NSC) reduced the magnitude of the SFR 60s after stretch (400 microM streptomycin: from 86+/-25% to 38+/-14%, P<0.01, n=9; 10 microM GdCl3: from 65+/-21%, to 12+/-7%, P<0.01, n=7; 10 microM GsMTx-4 from 122+/-40% to 15+/-8%, P<0.05, n=6). Streptomycin also decreased the increase in Ca2+ transient amplitude 60s after the stretch from 43.5+/-12.7% to 5.7+/-3.5% (P<0.05, n=4), and reduced the stretch-dependent increase in intracellular Ca2+ in quiescent muscles when stretched. The transient receptor potential, canonical channels TRPC1 and TRPC6 are mechano-sensitive, non-selective cation channels. They are expressed in mouse ventricular muscle, and could therefore be responsible for stretch-dependent influx of Na+ and/or Ca2+ during the SFR. Expression of TRPC1 was investigated in the mdx heart, a mouse model of Duchenne's muscular dystrophy. Resting Ca2+ was raised in isolated myocytes from old mdx animals, which was blocked by application of SAC blockers. Expression of TRPC1 was increased in the older mdx animals, which have developed a dilated cardiomyopathy, and might therefore contribute to the dilated cardiomyopathy.  相似文献   

5.
6.
The role of the inward K+ rectifier in the repetitive activity at depolarized levels was studied in guinea pig single ventricular myocytes by voltage- and current-clamp methods. In action potentials arrested at the plateau by a depolarizing current, small superimposed hyperpolarizing currents caused much larger voltage displacements than at the resting potential and sometimes induced a regenerative repolarization. Around –20 mV, sub- and suprathreshold repetitive inward currents were found. In the same voltage range, small hyperpolarizing currents reversed their polarity. During depolarizing voltage-clamp ramps, around –20 mV there was a sudden decrease in the outward current (Ins: current underlying the negative slope in the inward K+ rectifier steady state I–V relation). During repolarizing ramps, the reincrease in outward current was smaller and slower. During depolarizing and repolarizing current ramps, sudden voltage displacements showed a similar asymmetry. Repetitive Ins could continue as long as the potential was kept at the level at which they appeared. Depolarizing voltage-clamp steps also caused repetitive Ins and depolarizing current steps induced repetitive slow responses. Cadmium and verapamil reduced Ins amplitude during the depolarizing ramp. BRL 34915 (cromakalim), an opener of the ATP-sensitive K+ channel, eliminated the negative slope and Ins, whereas barium increased Ins frequency (an effect abolished by adding BRL). Depolarization-induced slow responses persisted in an NaCl-Ca-free solution. Thus, the mechanism of repetitive activity at the depolarized level appears to be related to the presence of the negative slope in the inward K+ rectifier I–V relation.  相似文献   

7.
CBA/J adult male mice were given single or triple exposures to 2450-mHz microwaves in an environmentally controlled wave guide facility. The average absorbed dose rate for a single exposure varied from 12 to 15 mW/g. Sham-exposed mice served as controls. Lymphoid cells were collected and tested for metabolic activity on days 3, 6, and 9 following a single exposure, and on days 9, 12, and 16 following triple exposures on days 0, 3, and 6. Cells were cultured in vitro for four hours to seven days before their metabolic rates were assayed. Under these conditions, microwaves failed to produce any detectable change in deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis, as measured by the incorporation of methyl(3H)-thymidine (3H-TDR) (DNA substrate), 3H-uridine (3H-UR) (RNA substrate), and 3H-leucine (protein substrate) by spleen, bone marrow, and peripheral blood lymphocytes (PBL) in vitro. These data suggest that microwave-induced increases in the frequency of complement-receptor (CR)- or surface-immunoglobulin (sIg)-bearing cells were not associated with a concomitant increase in cell proliferation and/or protein synthesis, and favor the concept that microwaves under these conditions stimulate already existing B-cell precursors for maturation.  相似文献   

8.
Membrane proteins possess certain features that make them susceptible to the electric fields generated at the level of the plasma membrane. A reappraisal of cell signalling, taking into account the protein interactions with the membrane electrostatic profile, suggests that an electrical dimension is deeply involved in this fundamental aspect of cell biology. At least three types of potentials can contribute to this dimension: (1) the potential across the compact layer of water adherent to membrane surfaces; this potential is affected by classical inducers of cell differentiation, like dimethylsulfoxide and hexamethylenebisacetamide; (2) the potential across the Gouy-Chapman double layer, which accounts for the effects of extracellular cations in the modulation of differentiation; and (3) the resting potential. This last potential and its governing ion currents can be exploited in localised mechanisms of cell signalling centred on the functional association of integrin receptors with ion channels.  相似文献   

9.
G Voordouw  C Milo  R S Roche 《Biochemistry》1976,15(17):3716-3724
The total kinetic thermal stability of a protein molecule, expressed as the total free energy of activation in thermal denaturation reactions, can be separated into an intrinsic contribution of the polypeptide chain and a contribution due to the binding of calcium ions. The theory for this procedure is applied to thermal denaturation data, obtained at the pH of optimum stability, for the serine proteases, thermomycolase and subtilisin types Carlsberg and BPN', and for the zinc metalloendopeptidases, thermolysin and neutral protease A. The results, obtained from Arrhenius plots at high and low free calcium ion concentrations, reveal a considerable variation in the calcium ion contribution to the total kinetic thermal stability of the various enzymes. In the serine protease group, at 70 degrees C, the stability is largest for thermomycolase, mainly due to a relatively high intrinsic contribution. For the metalloendopeptidases the total kinetic thermal stability is largest for thermolysin, the difference between thermolysin and neutral protease A being dominated by bound calcium ion contributions. The intrinsic kinetic thermal stability of the polypeptide chain of thermolysin is considerably smaller than that of any of the serine proteases and is probably of the same order of magnitude as that of neutral protease A. Thus, the well known total kinetic thermal stability of thermolysin is due mainly to a single calcium ion (Voordouw, G., and Roche, R. S. (1975), Biochemistry 14, 4667) that binds with high affinity even at very high temperatures (K congruent to 6 X 10(7) M-1 at 80 degrees C).  相似文献   

10.
Iodolipids are the possible mediators of excess iodide in thyroid autoregulation. Previous work from our laboratory has shown that 14-iodo-15-hydroxy-5,8,11 eicosatrienoic acid (I-HO-A) and its omega lactone (IL-w) mimic the inhibitory action of excess iodide upon several parameters of thyroid metabolism. The present experiments were performed in order to study the mechanism of the inhibitory effect of I-HO-A and IL-w on 2-deoxy-D-glucose (DOG) and aminoisobutyric acid (AIB) uptake by calf slices. I-HO-A, IL-w and KI 0.1 mM caused a 33, 31 and 25% inhibition, respectively, of AIB uptake. The presence of 0.1 mM methimazole (MMI) only reversed the effect of KI. The transport of DOG was inhibited by both compounds: I-HO-A caused a 62% decrease, while IL-w produced a 64% inhibition; and MMI failed to relieve their action. On the contrary, the 33% inhibition caused by KI disappeared when MMI was present. Taking into account that AIB and DOG transport across the membrane requires energy, supplied by Na-K-ATPase, changes in its activity were studied. TSH (10 mU/ml) produced a 74% increase in the enzyme activity which was significantly blocked by KI (82%), I-HO-A (100%) and IL-w (100%). Basal enzyme activity was impaired by IL-w (33%), but not by KI. These results were correlated with the decrease of DOG uptake produced by 1 mM ouabain. Tissue specificity effect of iodoarachidonates was demonstrated by the absence of action on DOG transport in kidney and liver.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The carboxylic ionophore monensin inhibits the meiotic maturation of the Xenopus oocyte. When oocytes are exposed to high concentrations of monensin (10 μM), both progesterone and MPF-induced (maturation-promoting factor-induced) maturations are blocked. Lower doses of monensin (1–10 μM) do not inhibit the formation or amplification of MPF activity in the oocyte cytoplasm; however, breakdown of the nuclear envelope does not occur. These observations show that monensin, which is known to abolish intracellular proton gradients, interferes with the mechanism of the breakdown of the nuclear envelope induced by MPF.  相似文献   

12.
Chi  Yong  Chen  Xiangrui  Li  Yuqing  Wang  Chundi  Zhang  Tengteng  Ayoub  Alex  Warren  Alan  Song  Weibo  Wang  Yuanyuan 《中国科学:生命科学英文版》2021,64(4):606-620
Heterotrichous ciliates play an important role in aquatic ecosystem energy flow processes and many are model organisms for research in cytology, regenerative biology, and toxicology. In the present study, we combine both morphological and molecular data to infer phylogenetic relationships at family-genus level and propose new evolutionary hypotheses for the class Heterotrichea. The main results include:(1) 96 new ribosomal DNA sequences from 36 populations, representing eight families and 13 genera, including three poorly annotated genera, Folliculinopsis, Ampullofolliculina and Linostomella;(2) the earliest-branching families are Spirostomidae in single-gene trees and Peritromidae in the concatenated tree, but the family Peritromidae probably represents the basal lineage based on its possession of many "primitive" morphological characters;(3) some findings in molecular trees are not supported by morphological evidence, such as the family Blepharismidae is one of the most recent branches and the relationship between Fabreidae and Folliculinidae is very close;(4) the systematic positions of Condylostomatidae, Climacostomidae, and Gruberiidae remain uncertain based either on morphological or molecular data; and(5)the monophyly of each genus included in the present study is supported by the molecular phylogenetic trees, except for Blepharisma in the SSU r DNA tree and Folliculina in the ITS1-5.8 S-ITS2 tree.  相似文献   

13.
Membrane fouling by soluble microbial products (SMP) remains one of the limitations for widespread applications of membrane bioreactor (MBR) systems. Over the past two decades, the characteristics and behaviors of SMP have attracted much attention, and efforts have been dedicated to clarify their role in membrane fouling in MBRs. However, to date, there are only few reviews directly relating this area, and the objective of previous reviews is to concentrate on SMP and their implications in biological treatment systems and their effluents. This brief review relating only to SMP-caused membrane fouling evaluation at the fractional level (SMP key components, sub-fractions and hydrophilic and hydrophobic fractions) and at the overall level (SMP overall roles, characteristics and factors) is presented, which could greatly help researchers and engineers to better understand SMP actual contribution to membrane fouling and adopt effective measures to avoid SMP-caused fouling in MBRs.  相似文献   

14.
Functional biochemical tests are the gold standard for the diagnosis of mitochondria-related diseases. However, the availability of the biological samples from patients' tissues represents a severe limitation to the number of screenable enzymatic activities. In this study we developed a fluorescent probe-assisted microscopy protocol enabling to assess the ΔΨm-generating capacity by mitochondria immobilized on a glass surface at the single organelle resolution-level. The advantage of this assay over others is to scale-down the amount of the biological sample required to test in a short time the functional activity of all the components of the oxidative phosphorylation system without loss of accuracy. Furthermore, the distribution of a given enzymatic activity can also be evaluated within the mitochondrial population enabling to measure the level of functional heterogeneity of the respiratory chain dysfunction.  相似文献   

15.
The toxicity of heavy metals on photosystem 2 photochemistry, was investigated by monitoring Hill activity, fluorescence, and thermoluminescence properties of photosystem 2 (PS 2) in pea (Pisum sativum L. cv. Bombay) chloroplasts. In Co2+-, Ni2+- or Zn2+-treated chloroplasts 2,6-dichlorophenolindophenol-Hill activity was markedly inhibited. Addition of hydroxylamine which donates electrons close to PS 2 reaction center did not restore the PS 2 activity. Co2+-, Ni2+ or Zn2+ also inhibited PS 2 activity supported by hydroxylamine in tris (hydroxymethyl)aminomethane (Tris)-inactivated chloroplasts. These observations were confirmed by fluorescence transient measurements. This implies that the metal ions inhibit either the reaction center or the components of PS 2 acceptor side. Flash-induced thermoluminescence studies revealed that the S2Q?A charge recombination was insensitive to metal ion addition. The S2Q?B charge recombination, however, was inhibited with increase in the level of Co2+, Ni2+ or Zn2+. The observed sensitivity of S2?B charge recombination in comparison to the stability of S2Q?A recombination suggests that the metal ions inhibit at the level of secondary quinone electron acceptor. QB. We suggest that Co2+, Ni2+ or Zn2+ do not block the electron flow between the primary and secondary quinone electron acceptor, but possibly, directly modify QB site, leading to the loss of PS 2 activity.  相似文献   

16.
Membrane fouling commonly occurs in all filter types during virus filtration in protein‐based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose‐based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post‐adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose‐based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379–386, 2018  相似文献   

17.
Abstract: The uptake of compounds by the brain depends upon cerebral blood flow. To determine the normal blood flow-cerebral extraction relationship, a method for rapid, simultaneous measurement of cerebral blood flow and brain extraction was developed and applied to blood-brain leucine transfer. Awake rats were injected intravenously with a mixture of n-[14C]butanol and [3H]leucine. The quantities of indicators accumulated over the following 5–12 s in brain and in a sample of arterial blood withdrawn at a known rate were used to determine the flux of butanol and leucine into brain. Butanol extraction was assessed independently by measuring arterial and cerebral venous concentrations of the indicator after a bolus injection. Cerebral blood flow was equal to the ratio of butanol flux into brain to butanol extraction by brain; leucine extraction was then calculated as the ratio of leucine influx to cerebral blood flow. Leucine extraction by brain and cerebral blood flow were shown to be related exponentially. The maximum velocity of active leucine transport was virtually the same at flows of 150 and 400 ml/100 g/min. The present method is theoretically applicable to the measurement of the extraction of any compound from blood by brain. By measuring the noimal blood flow-extraction relationship, one can differentiate changes in extraction secondary to altered flow from changes intrinsic to pathologic conditions with inconstant cerebral blood flow.  相似文献   

18.
The regulation of adrenergic receptors in rat heart was measured in rats made hyperthyroid by injection with thyroxine and made hypothyroid by addition of propylthiouracil to the drinking water. Hyperthyroid rats displayed cardiac hypertrophy and a decrease in epididymal gat pad weight. The maximal beta-receptor level of ventricular membranes, as determined by (?)-[3H]dihydroalprenolol binding, was increased 60% by thyroxine treatment and decreased about 30% by propylthiouracil treatment. The affinity of the beta receptor was unchanged after thyroxine or propylthiouracil treatment. The maximal activity of the isoproterenol-stimulated adenylate cyclase (EC 4.6.1.1) varied with thyroid state in a manner parallel to the increase in beta-adrenergic binding sites. Thyroxine treatment also increases by 2-fold the beta receptors in isolated rat fat cells.Propylthiouracil treatment lowered the level of alpha receptors in heart by 30% as measured by [3H]dihydroergocryptine binding, but increased the affinity about 2.5 fold. The highest level of alpha receptors was seen in control hearts. These studies indicate that thyroxine may control the turnover of beta-adrenergic receptors in heart and fat cells and regulate physiological responses in these tissues via a hormone-hormone interplay system.Thyroxine treatment reduced the activity of the membrane-bound Mg2+-ATPase (EC 3.6.1.3) and 5′-mononucleotidase (EC 3.1.3.5) but appears to increase the activity of the (Na+ + K+)ATPase (EC 3.6.1.4).  相似文献   

19.
Summary Using patch-clamp techniques, we have studied Ca2+-activated K+ channels in the basolateral membrane of freshly isolated epithelial cells from rabbit distal colon. Epithelial cell clusters were obtained from distal colon by gentle mechanical disruption of isolated crypts. Gigaohm seals were obtained on the basolateral surface of the cell clusters. At the resting potential (approximately –45 mV), with NaCl Ringer's bathing the cell, the predominant channels had a conductance of 131±25 pS. Channel activity depended on voltage as depolarization of the membrane increased the open probability. In excised inside-out patches, channels were found to be selective for K+ over Na+. Channel activity correlated directly with bath Ca2+ concentration in the excised patches. Channel currents were blocked by 5mm TEA+ and 1mm Ba2+. In cell-attached patches, after addition of the Ca2+ ionophore A23187, which increases intracellular Ca2+, open probability was markedly increased. Channel activity was also regulated by cAMP as addition of 1mm dibutyryl-cAMP in the bath solution in cell-attached patches increased channel open probability over 20-fold. Channels that had been activated by cAMP were further activated by Ca2+. We conclude that the basolateral membrane of epithelial cells from descending colon contains a class of potassium channels, which are regulated by intracellular Ca2+ and cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号