首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's murine encephalomyelitis viruses (TMEV) are naturally occurring enteric pathogens of mice which constitute a separate serological group within the picornavirus family. Persistent TMEV infection in mice provides a relevant experimental animal model for the human demyelinating disease multiple sclerosis. To provide information about the TMEV classification, genome organization, and protein processing map, we determined the complete nucleotide sequence of the TMEV genome and deduced the amino acid sequence of the polyprotein coding region. The RNA genome, which is typical of the picornavirus family, is 8,098 nucleotides long. The 5' untranslated region is 1,064 nucleotides long (making it the longest in the picornavirus family after the aphthoviruses) and lacks a poly(C) tract. Computer-generated comparison of the 5' and 3' noncoding regions and polyprotein revealed the highest level of nucleotide and predicted amino acid identity between the TMEV and the cardioviruses encephalomyocarditis virus (EMCV) and Mengo virus. The TMEV polyprotein, which appears to be processed like EMCV since the amino acids flanking the putative proteolytic cleavage sites have been conserved, begins with a short leader peptide followed by 11 other gene products in the standard L-4-3-4 picornavirus arrangement. Because of these similarities, we propose that the TMEV be grouped with the cardioviruses. However, since TMEV and EMCV have different biophysical properties and show no cross-neutralization, they most likely belong in a separate cardiovirus subgroup.  相似文献   

2.
Amongst the picornaviruses, poliovirus encodes a single copy of the genome-linked protein, VPg wheras foot-and-mouth disease virus uniquely encodes three copies of VPg. We have previously shown that a genetically engineered poliovirus genome containing two tandemly arranged VPgs is quasi-infectious (qi) that, upon genome replication, inadvertently deleted one complete VPg sequence. Using two genetically marked viral genomes with two VPg sequences, we now provide evidence that this deletion occurs via homologous recombination. The mechanism was abrogated when the second VPg was engineered such that its nucleotide sequence differed from that of the first VPg sequence by 36%. Such genomes also expressed a qi phenotype, but progeny viruses resulted from (i) random deletions yielding single VPg coding sequences of varying length lacking the Q*G cleavage site between the VPgs and (ii) mutations in the AKVQ*G cleavage sites between the VPgs at either the P4, P1 or P1' position. These variants present a unique genetic system defining the cleavage signals recognized in 3Cpro-catalyzed proteolysis. We propose a recognition event in the cis cleavages of the polyprotein P2-P3 region, and we present a hypothesis why the poliovirus genome does not tolerate two tandemly arranged VPg sequences.  相似文献   

3.
C Fuentes  A Bosch  RM Pintó  S Guix 《Journal of virology》2012,86(18):10070-10078
Viral genome-linked proteins (VPgs) have been identified in several single-stranded positive-sense RNA virus families. The presence of such protein in the family Astroviridae has not been fully elucidated, although a putative VPg coding region in open reading frame 1a (ORF1a) of astrovirus with high amino acid sequence similarity to the VPg coding region of Caliciviridae has been previously identified. In this work we present several experimental findings that show that human astrovirus (HAstV) RNA encodes a VPg essential for viral infectivity: (i) RNase treatment of RNA purified from astrovirus-infected cells results in a single protein of 13 to 15 kDa, compatible with the predicted astrovirus VPg size; (ii) the antibody used to detect this 13- to 15-kDa protein is specifically directed against a region that includes the putative VPg coding region; (iii) the 13- to 15-kDa protein detected has been partially sequenced and the sequence obtained is contained in the computationally predicted VPg; (iv) the protein resulting from this putative VPg coding region is a highly disordered protein, resembling the VPg of sobemo-, calici- and potyviruses; (v) proteolytic treatment of the genomic RNA leads to loss of infectivity; and (vi) mutagenesis of Tyr-693 included in the putative VPg protein is lethal for HAstV replication, which strongly supports its functional role in the covalent link with the viral RNA.  相似文献   

4.
A partial amino acid sequence of cowpea mosaic virus (CPMV) VPg radiochemically modified by chloramine-T and Bolton-Hunter reagent has been determined. VPg covalently bound to viral RNA chains (VPg-RNA) was iodinated with chloramine-T and Bolton-Hunter reagent to label tyrosine and lysine residues, respectively. [125I]VPg-RNA was digested with nuclease P1 and the resulting [125I]VPg-pU was purified by SDS-polyacrylamide gel electrophoresis and subjected to automated Edman degradation. Control experiments with chemically synthesized poliovirus VPg showed the feasibility of radiochemical microsequence analysis of protein that had been radiochemically modified by chloramine-T and Bolton-Hunter reagent. Analysis of CPMV [125I]VPg-pU revealed the presence of tyrosine residues at position 12 and 14, and of lysine residues at position 3 and 20, respectively. In combination with Edman degradation of unlabeled CPMV VPg, which showed serine and arginine residues to be present at position 1 and 2, respectively, the data obtained allow the precise positioning of VPg within the 200 000 dalton (200 K) polyprotein encoded by CPMV B RNA and the prediction of its entire amino acid sequence. VPg is located at the COOH terminus of its 60 K, membrane-bound,precursor and proximal to the amino terminus of the protease-polymerase domain of the polyprotein. A processing scheme for the 200 K polyprotein is discussed in which Gln-Ser amino acid pairs act as the major signal for proteolytic cleavage.  相似文献   

5.
M M Falk  F Sobrino    E Beck 《Journal of virology》1992,66(4):2251-2260
In order to analyze the function of VPg amplification in aphthoviruses, we have undertaken the first mutational analysis of the repetitive VPg-coding region using an improved foot-and-mouth disease virus (FMDV) cDNA clone from which infective viral RNA was synthesized. A set of VPg mutants was constructed by site-directed mutagenesis which includes different VPg deletion mutations, a VPg insertion mutation, and amino acid residue replacement mutations that interfere with binding of the VPg protein to the viral RNA and with its proteolytic processing. Our results revealed that an amazing flexibility in the number of VPgs is tolerated in FMDV. Optimal viability is given when three VPgs are encoded. Deletion as well as insertion of one VPg gene still resulted in infective particle production. Infective particle formation was observed as long as one VPg remained intact. No obvious differences in the individual VPg molecules with regard to their promoting viral RNA synthesis were observed, indicating that all three VPgs can act equally in FMDV replication. Mutant polyprotein processing was comparable to that of the wild-type virus. However, VPg mutants showed reduced viral RNA synthesis levels after infection. The levels of viral RNA synthesis and infective particle formation were found to correlate with the number of functional VPgs left in the mutant virus. These findings suggest a direct VPg gene dosage effect on viral RNA synthesis, with a secondary effect on infective particle formation.  相似文献   

6.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

7.
Cleavage sites within the poliovirus capsid protein precursors.   总被引:15,自引:11,他引:4       下载免费PDF全文
Partial amino-terminal sequence analysis was performed on radiolabeled polio-virus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.  相似文献   

8.
Schein CH  Oezguen N  Volk DE  Garimella R  Paul A  Braun W 《Peptides》2006,27(7):1676-1684
VPgs are essential for replication of picornaviruses, which cause diseases such as poliomyelitis, foot and mouth disease, and the common cold. VPg in infected cells is covalently linked to the 5' end of the viral RNA, or, in a uridylylated form, free in the cytoplasm. We show here the first solution structure for a picornaviral VPg, that of the 22-residue peptide from poliovirus serotype 1. VPg in buffer is inherently flexible, but a single conformer was obtained by adding trimethylamine N-oxide (TMAO). TMAO had only minor effects on the TOCSY spectrum. However, it increased the amount of structured peptide, as indicated by more peaks in the NOESY spectrum and an up to 300% increase in the ratio of normalized NOE cross peak intensities to that in buffer. The data for VPg in TMAO yielded a well defined structure bundle with 0.6 A RMSD (versus 6.6 A in buffer alone), with 10-30 unambiguous constraints per residue. The structure consists of a large loop region from residues 1 to 14, from which the reactive tyrosinate projects outward, and a C-terminal helix from residues 18 to 21 that aligns the sidechains of conserved residues on one face. The structure has a stable docking position at an area on the poliovirus polymerase crystal structure identified as a VPg binding site by mutagenesis studies. Further, UTP and ATP dock in a base-specific manner to the reactive face of VPg, held in place by residues conserved in all picornavirus VPgs.  相似文献   

9.
The complete nucleotide sequence of wild-type hepatitis A virus (HAV) HM-175 was determined. The sequence was compared with that of a cell culture-adapted HAV strain (R. Najarian, D. Caput, W. Gee, S.J. Potter, A. Renard, J. Merryweather, G.V. Nest, and D. Dina, Proc. Natl. Acad. Sci. USA 82:2627-2631, 1985). Both strains have a genome length of 7,478 nucleotides followed by a poly(A) tail, and both encode a polyprotein of 2,227 amino acids. Sequence comparison showed 624 nucleotide differences (91.7% identity) but only 34 amino acid differences (98.5% identity). All of the dipeptide cleavage sites mapped in this study were conserved between the two strains. The sequences of these two HAV strains were compared with the partial sequences of three other HAV strains. Most amino acid differences were located in the capsid region, especially in VP1. Whereas changes in amino acids were localized to certain portions of the genome, nucleotide differences occurred randomly throughout the genome. The most extensive nucleotide homology between the strains was in the 5' noncoding region (96% identity for cell culture-adapted strains versus wild type; greater than 99% identity among cell culture-adapted strains). HAV proteins are less homologous with those of any other picornavirus than the latter proteins are when compared with each other. When the sequences of wild-type and cell culture-adapted HAV strains are compared, the nucleotide differences in the 5' noncoding region and the amino acid differences in the capsid region suggest areas that may contain markers for cell culture adaptation and for attenuation.  相似文献   

10.
Astroviruses have been widely described in mammalian and avian species. Here, we report a complete genome sequence of a novel porcine astrovirus (PoAstV) isolated from a porcine fecal sample in China. The genome consists of 6,611 nucleotides, excluding the 3′ poly(A) tail, and has two open reading frames (ORFs). ORF1 maps between nucleotide positions 19 and 4211 and encodes a 1,396-amino-acid (aa) polyprotein precursor consisting of nonstructural protein and putative RNA-dependent RNA polymerase, and ORF2 maps between nucleotide positions 4202 and 6531 and encodes a 775-aa polyprotein which is a capsid precursor protein. The genome sequence of the virus was distinct enough from those of the known PoAstVs to be considered a novel sequence. Phylogenetic analysis based on the predicted amino acid sequence of the complete capsid region showed that this strain may be a novel porcine astrovirus.  相似文献   

11.
The amino acid sequence of the polyprotein deduced from the nucleotide sequence of the Japanese hepatitis C virus genome (N. Kato et. al. (1990) Proc. Natl. Acad. Sci. USA 87, 9524–9528)indicated that this virus is a member of a new class of positive-stranded RNA viruses. Several domains of this polyprotein also showed weak homology with those of flaviviruses and pestiviruses including the chymotrypsin-like serine proteinase. NTPase and RNA-dependent RNA polymerase  相似文献   

12.
Replication of picornaviral genomes requires recognition of at least three cis-acting replication elements: oriL, oriI, and oriR. Although these elements lack an obvious consensus sequence or structure, they are all recognized by the virus-encoded 3C protein. We have studied the poliovirus 3C-oriI interaction in order to begin to decipher the code of RNA recognition by picornaviral 3C proteins. oriI is a stem-loop structure that serves as the template for uridylylation of the peptide primer VPg by the viral RNA-dependent RNA polymerase. In this report, we have used nuclear magnetic resonance (NMR) techniques to study 3C alone and in complex with two single-stranded RNA oligonucleotides derived from the oriI stem. The (1)H-(15)N spectra of 3C recorded in the presence of these RNAs revealed site-specific chemical shift perturbations. Residues that exhibit significant perturbations are primarily localized in the amino terminus and in a highly conserved loop between residues 81 and 89. In general, the RNA-binding site defined in this study is consistent with predictions based on biochemical and mutagenesis studies. Although some residues implicated in RNA binding by previous studies are perturbed in the 3C-RNA complex reported here, many are unique. These studies provide unique site-specific insight into residues of 3C that interact with RNA and set the stage for detailed structural investigation of the 3C-RNA complex by NMR. Interpretation of our results in the context of an intact oriI provides insight into the architecture of the picornavirus VPg uridylylation complex.  相似文献   

13.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

14.
Yang Y  Yi M  Evans DJ  Simmonds P  Lemon SM 《Journal of virology》2008,82(20):10118-10128
Internally located, cis-acting RNA replication elements (cre) have been identified within the genomes of viruses representing each of the major picornavirus genera (Enterovirus, Rhinovirus, Aphthovirus, and Cardiovirus) except Hepatovirus. Previous efforts to identify a stem-loop structure with cre function in hepatitis A virus (HAV), the type species of this genus, by phylogenetic analyses or thermodynamic predictions have not succeeded. However, a region of markedly suppressed synonymous codon variability was identified in alignments of HAV sequences near the 5′ end of the 3Dpol-coding sequence of HAV, consistent with noncoding constraints imposed by an underlying RNA secondary structure. Subsequent MFOLD predictions identified a 110-nucleotide (nt) complex stem-loop in this region with a typical AAACA/G cre motif in its top loop. A potentially homologous RNA structure was identified in this region of the avian encephalitis virus genome, despite little nucleotide sequence relatedness between it and HAV. Mutations that disrupted secondary RNA structure or the AAACA/G motif, without altering the amino acid sequence of 3Dpol, ablated replication of a subgenomic HAV replicon in transfected human hepatoma cells. Replication competence could be rescued by reinsertion of the native 110-nt stem-loop structure (but not an abbreviated 45-nt stem-loop) upstream of the HAV coding sequence in the replicon. These results suggest that this stem-loop is functionally similar to cre elements of other picornaviruses and likely involved in templating VPg uridylylation as in other picornaviruses, despite its significantly larger size and lower free folding energy.  相似文献   

15.
The complete nucleotide sequence of the coding region of foot and mouth disease virus RNA (strain A1061) is presented. The sequence extends from the primary initiation site, approximately 1200 nucleotide from the 5' end of the genome, in an open translational reading frame of 6,999 nucleotides to a termination codon 93 nucleotides from the 3' terminal poly (A). Available amino acid sequence data correlates with that predicted from the nucleotide sequence. The amino acid sequence around cleavage sites in the polyprotein shows no consistency, although a number of the virus-coded protease cleavage sites are between glutamate and glycine residues.  相似文献   

16.
The identity of the amino acid residue that links the VPg of the potyvirus tobacco vein mottling virus (TVMV) to the viral RNA was determined. 32P-labeled TVMV RNA was digested with RNase A and micrococcal nuclease. The resulting 32P-labeled VPg was isolated and partially hydrolyzed with 6 N HCl at 110 degrees C for 2 h. Analysis by thin-layer electrophoresis revealed the presence of [32P]phosphotyrosine but not [32P]phosphoserine or [32P]phosphothreonine. Another preparation of TVMV RNA was treated with endoproteinase Lys-C, and the resulting peptide-RNA was purified by sodium dodecyl sulfate-sucrose gradient centrifugation. The sequence of the N-terminal 15 amino acid residues of the peptide, when compared with the RNA-derived amino acid sequence of the TVMV polyprotein, demonstrated that the peptide occurs in the small nuclear inclusion protein. These data suggest that Tyr-1860 of the polyprotein is the amino acid residue that links the TVMV VPg to the viral RNA.  相似文献   

17.
T K Frey  L D Marr 《Gene》1988,62(1):85-99
The sequence of the 3' 4508 nucleotides (nt) of the genomic RNA of the Therien strain of rubella virus (RV) was determined for cDNA clones. The sequence contains a 3189-nt open reading frame (ORF) which codes for the structural proteins C, E2 and E1. C is predicted to have a length of 300 amino acids (aa). The N-terminal half of the C protein is highly basic and hydrophilic in nature, and is putatively the region of the protein which interacts with the virion RNA. At the C terminus of the C protein is a stretch of 20 hydrophobic aa which also serves as the signal sequence for E2, indicating that the cleavage of C from the polyprotein precursor may be catalyzed by signalase in the lumen of the endoplasmic reticulum. E2 is 282 aa in length and contains four potential N-linked glycosylation sites and a putative transmembrane domain near its C terminus. The sequence of E1 has been previously described [Frey et al., Virology 154 (1986) 228-232]. No homology could be detected between the amino acid sequence of the RV structural proteins and the amino acid sequence of the alphavirus structural proteins. From the position of a region of 30 nt in the RV genomic sequence which exhibited significant homology with the sequence in the alphavirus genome at which subgenomic RNA synthesis is initiated, the RV subgenomic RNA is predicted to be 3346 nt in length and the nontranslated region from the 5' end of the subgenomic RNA to the structural protein ORF is predicted to be 98 nt. In a different translation frame beginning at the 5' end of the RV nt sequence reported here is a 1407 nt ORF which is the C terminal region of the nonstructural protein ORF. This ORF overlaps the structural protein ORF by 149 nt. A low level of homology could be detected between the predicted amino acid sequence of the C-terminus of the RV nonstructural protein ORF and the replicase proteins of several positive RNA viruses of animals and plants, including nsp4 of the alphaviruses, the protein encoded by the C-terminal region of the alphavirus nonstructural ORF. However, the overall homology between RV and the alphaviruses in this region of the genome was only 18%, indicating that these two genera of the Togavirus family are only distantly related. Intriguingly, there is a 2844-nt ORF present in the negative polarity orientation of the RV sequence which could encode a 928-aa polyprotein.  相似文献   

18.
Poliovirus VPg is a 22 amino acid residue peptide that serves as the protein primer for replication of the viral RNA genome. VPg is known to bind directly to the viral RNA-dependent RNA polymerase, 3D, for covalent uridylylation, yielding mono and di-uridylylated products, VPg-pU and VPg-pUpU, which are subsequently elongated. To model the docking of the VPg substrate to a putative VPg-binding site on the 3D polymerase molecule, we performed a variety of structure-based computations followed by experimental verification. First, potential VPg folded structures were identified, yielding a suite of predicted beta-hairpin structures. These putative VPg structures were then docked to the region of the polymerase implicated by genetic experiments to bind VPg, using grid-based and fragment-based methods. Residues in VPg predicted to affect binding were identified through molecular dynamics simulations, and their effects on the 3D-VPg interaction were tested computationally and biochemically. Experiments with mutant VPg and mutant polymerase molecules confirmed the predicted binding site for VPg on the back side of the polymerase molecule during the uridylylation reaction, opposite to that predicted to bind elongating RNA primers.  相似文献   

19.
The complete nucleotide sequence of poliovirus RNA has a long open reading frame capable of encoding the precursor polyprotein NCVP00. The first AUG codon in this reading frame is located 743 nucleotides from the 5' end of the RNA and is preceded by eight AUG codons in all three reading frames. Because all proteins that map at the amino terminus of the polyprotein (P1-1a, VP0, and VP4) are blocked at their amino termini and previous studies of ribosome binding have been inconclusive, direct identification of the initiation site of protein synthesis was difficult. We separated and identified all of the tryptic peptides of capsid protein VP4 and correlated these peptides with the amino acid sequence predicted to follow the AUG codon at nucleotide 743. Our data indicate that VP4 begins with a blocked glycine that is encoded immediately after the AUG codon at nucleotide 743. An S1 nuclease analysis of poliovirus mRNA failed to reveal a splice in the 5' region. We concluded that synthesis of the poliovirus polyprotein is initiated at nucleotide 743, the first AUG codon in the long open reading frame.  相似文献   

20.
Polyprotein processing is a major strategy used by many plant and animal viruses to maximize the number of protein products obtainable from a single open reading frame. In Sesbania mosaic virus, open reading frame-2 codes for a polyprotein that is cleaved into different functional proteins in cis by the N-terminal serine protease domain. The soluble protease domain lacking 70-amino-acid residues from the N terminus (deltaN70Pro, where Pro is protease) was not active in trans. Interestingly, the protease domain exhibited trans-catalytic activity when VPg (viral protein genome-linked) was present at the C terminus. Bioinformatic analysis of VPg primary structure suggested that it could be a disordered protein. Biophysical studies validated this observation, and VPg resembled "natively unfolded" proteins. CD spectral analysis showed that the deltaN70Pro-VPg fusion protein had a characteristic secondary structure with a 230 nm positive CD peak. Mutation of Trp-43 in the VPg domain to phenylalanine abrogated the positive peak with concomitant loss in cis- and trans-proteolytic activity of the deltaN70Pro domain. Further, deletion of VPg domain from the polyprotein completely abolished proteolytic processing. The results suggested a novel mechanism of activation of the protease, wherein the interaction between the natively unfolded VPg and the protease domains via aromatic amino acid residues alters the conformation of the individual domains and the active site of the protease. Thus, VPg is an activator of protease in Sesbania mosaic virus, and probably by this mechanism, the polyprotein processing could be regulated in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号