首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Biodiversity is the most characteristic feature of cytochrome P450. Finding of CYP51 distributing widely in biological kingdoms provided breakthroughs for the discussion on the evolution and diversification of P450. Molecular phylogenetic analysis demonstrated that CYP51 appeared in the prokaryotic era and distributed into most kingdoms concomitant with phylogenetic divergence. This is the first evolutionary evidence indicating the prokaryotic origin of P450. Modification of substrate specificity of eukaryotic CYP51s occurred independently to adapt to the different sterol precursors existing in each kingdom. Formation of CYP51 variants through the mutation of active site and the selection of the advantageous ones from them were demonstrated by the emergence of azole-resistant CYP51s in Candida albicans under the environments rich in azole antifungal agents. These findings illustrate the most probable core process of P450 diversification consisting of modification of active site and selection of the resulting variants through interaction with endogenous and exogenous chemicals.  相似文献   

4.
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51(-/-) mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.  相似文献   

5.
杨娇艳  廖明军  杨劭 《生物工程学报》2008,24(10):1681-1688
甾醇14α-去甲基化酶(CYP51)是分布最广的细胞色素P450家族成员,是生物甾醇合成过程中的关键酶.故CYP51不仅是细胞色素P450蛋白结构、功能、结构与功能关系等研究的模板,而且是重要的降胆固醇药物、抗真菌药物和除草剂作用靶标,具有重要的经济价值.以下就CYP51家族的序列特征、功能(生理功能和生化特征)、结构、结构与功能的关系、CYP51活性的抑制等方面的研究进展进行了综述.并对CYP51抑制剂的研究局限方面进行了讨论,探讨了CYP51抑制剂设计开发的相关问题.  相似文献   

6.
7.
We studied six clinical isolates of Candida albicans. All six isolates showed high level resistance to fluconazole (minimum inhibitory concentrations 64 microg/ml) with varying degrees of cross-resistance to other azoles but not to amphotericin B. Neither higher dosage nor upregulation of the gene encoding the cytochrome P- 450 lanosterol 14 alpha-demethylase (CYP51A1 or P-450LDM) was responsible for fluconazole resistance. The resistant and the susceptible isolates accumulated similar amounts of azoles. To examine whether resistance to fluconazole in these clinical isolates of C. albicans is mediated by an altered target of azole action, we cloned the structural gene encoding P-450LDM from the fluconazole resistant isolates. The amino acid sequences of the P-450LDMs from the isolates were deduced from the gene sequences and compared to the P-450LDM sequence of the fluconazole-susceptible C. albicans B311. The enzymes from the clinical isolates showed 2 to 7 amino acid variations scattered across the molecules encompassing 10 different loci. One-half of the amino acid changes obtained were conserved substitutions (E116D, K143R, E266D, D278E, R287K) compared to the susceptible strain. Non-conserved substitutions were T128K, R267H, S405F, G450E and G464S, three of which are in and around the hemebinding region of the molecule. R287K is the only amino acid change that was found in all six clinical isolates. One or more of these mutational alterations may lead to the expression of an azole-resistant enzyme.  相似文献   

8.
Incubation of phenyldiazene (PhN = NH) with lanosterol 14 alpha-demethylase, a cytochrome P-450 enzyme (CYP51) that oxidatively removes the 14 alpha-methyl group of lanosterol, results in the appearance of a 478-nm band indicative of phenyl-iron complex formation. In situ oxidation of the phenyl-iron complex by ferricyanide yields exclusively the N-phenylprotoporphyrin IX regioisomer with the phenyl group on the nitrogen of pyrrole ring C (NC). The biphenyl-iron complex formed in the analogous reaction of the enzyme with biphenyldiazene similarly rearranges on treatment with ferricyanide to the NC regioisomer of N-biphenylprotoporphyrin IX. The active site cavity must therefore be at least 10 A high directly above the iron atom and pyrrole ring C of the heme group, and lanosterol binds to the enzyme in the region above pyrrole ring C. Phenyl-iron complex formation is not detected spectroscopically with cytochrome P-450SG1, a catalytically inactive G310D mutant of lanosterol 14 alpha-demethylase in which the sixth iron coordination site is thought to be occupied by an imidazole ligand. Nevertheless, oxidation of the phenyldiazene-treated enzyme with ferricyanide provides the NA and NC regioisomers of N-phenylprotoporphyrin IX in a 40:60 ratio. The single amino acid substitution in cytochrome P-450SG1 thus causes a conformational change that retracts the amino acid residues that cover pyrrole ring A and moves an imidazole ligand into the active site.  相似文献   

9.
Novel cholesterol biosynthesis inhibitors, a group of pyridylethanol(phenylethyl)amine derivatives, were synthesized. Sterol profiling assay in the human hepatoma HepG2 cells revealed that compounds target human lanosterol 14alpha-demethylase (CYP51). Structure-activity relationship study of the binding with the overexpressed human CYP51 indicates that the pyridine binds within the heme binding pocket in an analogy with the azoles.  相似文献   

10.
11.
Sterol 14alpha-demethylase encoded by CYP51 is a member of the cytochrome P450 (CYP) superfamily of enzymes and has been shown to have an essential role in sterol biosynthesis in eukaryotes, with orthologues recently being described in some bacteria. Examination of the genome sequence data for the proteobacterium Methylococcus capsulatus, a bacterial species known to produce sterol, revealed the presence of a single CYP with strong homology to CYP51, particularly to a form in Mycobacterium tuberculosis. This M. capsulatus CYP51 protein represents a new class of CYP consisting of the CYP domain naturally fused to a ferredoxin domain at the C terminus via an alanine-rich linker. Expression of the M. capsulatus MCCYP51FX fusion in Escherichia coli yielded a P450, which, when purified to homogeneity, had the predicted molecular mass approximately 62 kDa on SDS/PAGE and bound lanosterol as a putative substrate. Sterol 14alpha-demethylase activity was shown (0.24 nmol of lanosterol metabolized per minute per nanomole of MCCYP51FX fusion) by gas chromatography/mass spectrometry with the activity dependent upon the presence of ferredoxin reductase and NADPH. Our unique findings describe a new class of naturally existing cytochrome P450, which will provide pivotal information for CYP structure/function in general.  相似文献   

12.
The genetic locus encoding cytochrome P450 51 (CYP51; P450(14DM)) in Mycobacterium smegmatis is described here together with confirmation of activity in lanosterol 14 alpha-demethylation. The protein bound azole antifungals with high affinity and the rank order based on affinity matched the ranked order for microbiological sensitivity of the organism, thus supporting a possible role for CYP51 as a target in the antimycobacterial activity of these compounds. Non-saponifiable lipids were extracted from the bacteria grown on minimal medium. Unlike a previous report using growth on complex medium, no cholesterol was detected in two strains of M. smegmatis, but a novel lipid was detected. The genetic locus of CYP51 is discussed in relation to function; it is conserved as part of a putative operon in M. smegmatis, Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium bovis and consists of six open-reading frames including two CYPs and a ferredoxin under a putative Tet-R regulated promoter.  相似文献   

13.
We prepared a soluble monomeric form of bovine cytochrome P450 lanosterol 14α-demethylase (CYP51), which in mammals is a ubiquitously expressed membrane protein of the endoplasmic reticulum. We constructed two variants of bovine CYP51 (bCYP51) with different truncations and modifications in their N-terminal membrane-spanning domains. Both of these were expressed in Escherichia coli at levels of 500 nmol/l. The protein variants were purified and tested for the solubility in the absence of detergent. Variant bCYP51-d1 exhibited ∼10-fold better solubility over variant bCYT51-d2. The bCYP51-d1 eluted as a single peak in size-exclusion chromatography, corresponding to its monomeric form. The activity of bCYP51-d1 is similar to that of recombinant human CYP51 with a non-truncated membrane-spanning region. High solubility and low tendency to non-specific oligomer formation make bCYP51-d1 a promising candidate for successful crystallization, which may finally allow the structural determination of this important mammalian enzyme.  相似文献   

14.
15.
16.
Obtusifoliol 14alpha-demethylase is a plant orthologue of sterol 14alpha-demethylase (CYP51) essential in sterol biosynthesis. We have prepared CYP51 antisense Arabidopsis in order to shed light on the sterol and steroid hormone biosynthesis in plants. Arabidopsis putative CYP51 cDNA (AtCYP51) was obtained from Arabidopsis expressed sequence tag (EST) library and its function was examined in a yeast lanosterol 14alpha-demethylase (Erg11) deficient mutant. A recombinant AtCYP51 protein fused with a yeast Erg11 signal-anchor peptide was able to complement the erg11 mutation, which confirmed AtCYP51 to be a functional sterol 14alpha-demethylase. AtCYP51 was then used to generate transgenic Arabidopsis by transforming with pBI vector harboring AtCYP51 in the antisense direction under CaMV35S promoter. The resulting transgenic plants were decreased in accumulation of AtCYP51 mRNA and increased in the amount of endogenous obtusifoliol. They showed a semidwarf phenotype in the early growth stage and a longer life span than control plants. This newly found phenotype is different from previously characterized brassinosteroid (BR)-deficient campesterol biosynthesis mutants.  相似文献   

17.
D R Kirsch  M H Lai  J O'Sullivan 《Gene》1988,68(2):229-237
The Saccharomyces cerevisiae cytochrome P450 L1A1 (lanosterol 14 alpha-demethylase)-coding gene was used as a hybridization probe to isolate two HindIII fragments of 2.5 kb and 6.85 kb from a phage lambda library of Candida albicans nucleotide sequences. Restriction endonuclease mapping and Southern blot hybridization experiments indicated that these fragments represent two allelic forms of the same gene. This cloned sequence, when introduced into S. cerevisiae or C. albicans on a multiple copy vector, produced an increase in cytochrome P450 content and resistance to imidazole antifungal agents which are inhibitors of cytochrome P450 L1A1. In addition, the cloned sequence was able to complement a cytochrome P450 L1A1 gene disruption when introduced into S. cerevisiae. These data indicate that the cloned sequence codes for the lanosterol 14 alpha-demethylase cytochrome P450 L1A1 from C. albicans.  相似文献   

18.
Sterol demethylation inhibitor (DMI) fungicides are widely used to control fungi pathogenic to humans and plants. Resistance to DMIs is mediated either through alterations in the structure of the target enzyme CYP51 (encoding 14alpha-demethylase), through increased expression of the CYP51 gene, or through increased expression of efflux pumps. We found that CYP51 expression in DMI-resistant (DMI(R)) isolates of the cherry leaf spot pathogen Blumeriella jaapii was increased 5- to 12-fold compared to that in DMI-sensitive (DMI(S)) isolates. Analysis of sequences upstream of CYP51 in 59 DMI(R) isolates revealed that various forms of a truncated non-long terminal direct repeat long interspersed nuclear element retrotransposon were present in all instances. Similar inserts upstream of CYP51 were not present in any of 22 DMI(S) isolates examined.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号