首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on bacterial thioamide metabolism has focused on transformation of the antituberculosis drug ethionamide and related compounds by Mycobacterium tuberculosis. To study this metabolism more generally, a bacterium that grew using thioacetamide as the sole nitrogen source was isolated via enrichment culture. The bacterium was identified as Ralstonia pickettii and designated strain TA. Cells grown on thioacetamide also transformed other thioamide compounds. Transformation of the thioamides tested was dependent on oxygen. During thioamide degradation, sulfur was detected in the medium at the oxidation level of sulfite, further suggesting an oxygenase mechanism. R. pickettii TA did not grow on thiobenzamide as a nitrogen source, but resting cells converted thiobenzamide to benzamide, with thiobenzamide S-oxide and benzonitrile detected as intermediates. Thioacetamide S-oxide was detected as an intermediate during thioacetamide degradation, but the only accumulating metabolite of thioacetamide was identified as 3,5-dimethyl-1,2,4-thiadiazole, a compound shown to derive from spontaneous reaction of thioacetamide and oxygenated thioacetamide species. This dead-end metabolite accounted for only ca. 12% of the metabolized thioacetamide. Neither acetonitrile nor acetamide was detected during thioacetamide degradation, but R. pickettii grew on both compounds as nitrogen and carbon sources. It is proposed that R. pickettii TA degrades thioamides via a mechanism involving consecutive oxygenations of the thioamide sulfur atom.  相似文献   

2.
A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25 degrees C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on L?wenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.  相似文献   

3.
A challenge for photobiological production of hydrogen gas (H(2)) as a potential biofuel is to find suitable electron-donating feedstocks. Here, we examined the inorganic compound thiosulfate as a possible electron donor for nitrogenase-catalyzed H(2) production by the purple nonsulfur phototrophic bacterium (PNSB) Rhodopseudomonas palustris. Thiosulfate is an intermediate of microbial sulfur metabolism in nature and is also generated in industrial processes. We found that R. palustris grew photoautotrophically with thiosulfate and bicarbonate and produced H(2) when nitrogen gas was the sole nitrogen source (nitrogen-fixing conditions). In addition, illuminated nongrowing R. palustris cells converted about 80% of available electrons from thiosulfate to H(2). H(2) production with acetate and succinate as electron donors was less efficient (40 to 60%), partly because nongrowing cells excreted the intermediary metabolite α-ketoglutarate into the culture medium. The fixABCX operon (RPA4602 to RPA4605) encoding a predicted electron-transfer complex is necessary for growth using thiosulfate under nitrogen-fixing conditions and may serve as a point of engineering to control rates of H(2) production. The possibility to use thiosulfate expands the range of electron-donating compounds for H(2) production by PNSBs beyond biomass-based electron donors.  相似文献   

4.
Abstract The halophilic phototrophic bacterium Rhodospirillum salexigens was tested for growth on a variety of organic and inorganic nitrogenous compounds as sole nitrogen sources. In media containing acetate as carbon source, the amino acids glutamate, proline, and aspartate supported good growth of R. salexigens ; several other amino acids or ammonia did not support growth. Attempts to grow R. salexigens on ammonia led to the discovery that this organism excretes a highly basic substance under certain nitrogen nutritional conditions which raises the pH above that supporting growth. Cultures of R. salexigens transferred to media containing both pyruvate and acetate as carbon sources grew on ammonia as sole nitrogen source and the culture pH did not rise. Dual substrate experiments showed that R. salexigens utilized glutamate in preference to ammonia when both were present at equimolar concentrations.  相似文献   

5.
Acyl-homoserine lactones (acyl-HSLs) serve as dedicated cell-to-cell signaling molecules in many species of the class Proteobacteria. We have addressed the question of whether these compounds can be degraded biologically. A motile, rod-shaped bacterium was isolated from soil based upon its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone as the sole source of energy and nitrogen. The bacterium was classified as a strain of Variovorax paradoxus. The V. paradoxus isolate was capable of growth on all of the acyl-HSLs tested. The molar growth yields correlated with the length of the acyl group. HSL, a product of acyl-HSL metabolism, was used as a nitrogen source, but not as an energy source. Cleavage and partial mineralization of the HSL ring were demonstrated by using radiolabeled substrate. This study indicates that some strains of V. paradoxus degrade and grow on acyl-HSL signals as the sole energy and nitrogen sources. This study provides clues about the metabolic pathway of acyl-HSL degradation by V. paradoxus.  相似文献   

6.
对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建   总被引:22,自引:2,他引:22  
分离到一株假单胞菌 (Pseudomonassp .)P3 ,该菌能够以对硝基苯酚为唯一碳源和氮源进行生长。在有外加氮源的条件下 ,P3降解对硝基苯酚并在培养液中积累亚硝酸根。P3有比较广泛的底物适应性 ,对多种芳香族化合物都有降解能力。不同金属离子对P3降解对硝基苯酚有不同的作用。葡萄糖的存在对P3降解对硝基苯酚无明显促进作用 ,而微量酵母粉可以大大促进P3对硝基苯酚的降解。以P3为受体菌 ,通过接合转移的手段将甲基对硫磷水解酶基因mpd克隆至P3菌中 ,获得了表达甲基对硫磷水解酶活性的基因工程菌PM ,PM能够以甲基对硫磷为唯一碳源进行生长。工程菌PM具有较高的甲基对硫磷降解活性及稳定性  相似文献   

7.
Activated phenylalanine 4-monooxygenase, phenylalanine hydroxylase (PAH), is known to be involved in the S-oxidation of a number of sulfide compounds. One of these compounds, S-carboxymethyl-l-cysteine (SCMC), is currently used for the treatment of chronic obstructive pulmonary disease and otitis media with effusion as a mucolytic agent, and the S-oxides are the major metabolites found in urine. However, the enzyme catalyzing the S-oxidation of SCMC has yet to be identified. Here we report on the role of nonactivated phenylalanine 4-monooxygenase activity in rat liver cytosol in the S-oxidation of SCMC. Linearity of the enzyme assays was seen for both time (0-16 min) and cytosolic protein concentration (0.1-0.5mg/ml). The calculated K(m) and V(max) values for the formation of SCMC (S) S-oxide were 3.92+/-0.15 mM and 1.10+/-0.12 nmol SCMC (S) S-oxide formed/mg protein/min, respectively. The calculated K(m) and V(max) values for the formation of SCMC (R) S-oxide were 9.18+/-1.13 mM and 0.46+/-0.11 nmol SCMC (R) S-oxide formed/mg protein/min, respectively. These results indicate that in the female Wistar rat, nonactivated PAH showed a stereospecific preference for the formation of the (S) S-oxide metabolite of SCMC against the (R) S-oxide metabolite of SCMC.  相似文献   

8.
A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25°C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on Löwenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.  相似文献   

9.
Ethionamide (ETA), a prodrug that must undergo metabolic activation to exert its cytotoxic effects, is a second line drug against tuberculosis, a disease that infects more than a third of the world's population. It has been proposed, on the basis of genetic experiments, that ETA is activated in Mycobacterium tuberculosis by the protein encoded by the gene Rv3854c (DeBarber, A. E., Mdluli, K., Bosman, M., Bekker, L.-G., and Barry, C. E., III (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9677-9682; Baulard, A. R., Betts, J. C., Engohang-Ndong, J., Quan, S., McAdam, R. A., Brennan, P. J., Locht, C., and Besra, G. S. (2000) J. Biol. Chem. 275, 28326-28331). We report here the expression, purification, and characterization of the protein encoded by this gene. Our results establish that the enzyme (EtaA) is an FAD-containing enzyme that oxidizes ETA to the corresponding S-oxide. The S-oxide, which has a similar biological activity as ETA, is further oxidized by EtaA to 2-ethyl-4-amidopyridine, presumably via the unstable doubly oxidized sulfinic acid intermediate. This flavoenzyme also oxidizes thiacetazone, thiobenzamide, and isothionicotinamide and thus is probably responsible, as suggested by the observation of crossover resistance, for the oxidative activation of other thioamide antitubercular drugs.  相似文献   

10.
A mixed microbial culture capable of metabolizing the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A bacterium, Stenotrophomonas maltophilia PB1, isolated from the culture used RDX as a sole source of nitrogen for growth. Three moles of nitrogen was used per mole of RDX, yielding a metabolite identified by mass spectroscopy and 1H nuclear magnetic resonance analysis as methylene-N-(hydroxymethyl)-hydroxylamine-N'-(hydroxymethyl)nitroamin e. The bacterium also used s-triazine as a sole source of nitrogen but not the structurally similar compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, cyanuric acid, and melamine. An inducible RDX-degrading activity was present in crude cell extracts.  相似文献   

11.
Anaerobic degradation of toluene by a denitrifying bacterium.   总被引:12,自引:11,他引:1       下载免费PDF全文
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

12.
Anaerobic degradation of toluene by a denitrifying bacterium   总被引:12,自引:0,他引:12  
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

13.
Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2'-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2'-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria.  相似文献   

14.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

15.
A bacterium capable of degrading propoxur (2-isopropoxyphenyl-N-methylcarbamate) was isolated from soil by enrichment cultures and was identified as a Pseudomonas species. The organism grew on propoxur at 2 g/l as sole source of carbon and nitrogen, and accumulated 2-isopropoxyphenol as metabolite in the culture medium. The cell free extract of Pseudomonas sp. grown on propoxur contained the activity of propoxur hydrolase. The results suggest that the organism degraded propoxur by hydrolysis to yield 2-isopropoxyphenol and methylamine, which was further utilized as carbon source.  相似文献   

16.
Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid.  相似文献   

17.
18.
Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid.  相似文献   

19.
We isolated a bacterium capable of metabolising a methylated and methoxylated s-triazine ring as the only nitrogen source. On a weight basis, the s-triazine, commonly named triazine amine (TAM), constitutes approx. half of several sulfonylurea herbicides and is formed after hydrolysis of these herbicides. The isolate, strain TA57 was identified using multi-phasic taxonomy as a gram-positive Rhodococcus erythropolis. Strain TA57 mineralised over 50% 14C-labelled TAM within 4 days in growing cultures using all of the nitrogen for growth. The degradation capacity was found stable in cells grown on either tryptic soy broth agar plates or in minimal medium with NH4+. Among other s-triazines tested, only one other methylated, but de-methoxylated s-triazine amine supported growth. Inoculating 10(6) cells of TA57 per gram of soil (d.w.) resulted in 50% mineralisation of 14C labelled TAM (1 mg kg(-1)) within 25 days, in contrary to the indigenous population that mineralised only 6% in 50 days.  相似文献   

20.
Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds   总被引:7,自引:0,他引:7  
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号