首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases, and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently observed in membrane-enclosed vesicles in mammalian cells consistent with a role of autophagy in the degradation of these structures. Clearance of Hirano bodies by an exocytotic process is supported by images from electron microscopy showing extracellular release of Hirano bodies, and observation of Hirano bodies in the culture medium of Dictyostelium and mammalian cells. An autophagosome marker protein Atg8-GFP, was co-localized with model Hirano bodies in wild type Dictyostelium cells, but not in atg5(-) or atg1-1 autophagy mutant strains. Induction of model Hirano bodies in Dictyostelium with a high level expression of 34 kDa DeltaEF1 from the inducible discoidin promoter resulted in larger Hirano bodies and a cessation of cell doubling. The degradation of model Hirano bodies still occurred rapidly in autophagy mutant (atg5(-)) Dictyostelium, suggesting that other mechanisms such as the ubiquitin-mediated proteasome pathway could contribute to the degradation of Hirano bodies. Chemical inhibition of the proteasome pathway with lactacystin, significantly decreased the turnover of Hirano bodies in Dictyostelium providing direct evidence that autophagy and the proteasome can both contribute to degradation of Hirano bodies. Short term treatment of mammalian cells with either lactacystin or 3-methyl adenine results in higher levels of Hirano bodies and a lower level of viable cells in the cultures, supporting the conclusion that both autophagy and the proteasome contribute to degradation of Hirano bodies.  相似文献   

2.
《Autophagy》2013,9(6):686-701
The use of simple organisms to understand the molecular and cellular function of complex processes is instrumental for the rapid development of biomedical research. A remarkable example has been the discovery in S. cerevisiae of a group of proteins involved in the pathways of autophagy. Orthologues of these proteins have been identified in humans and experimental model organisms. Interestingly, some mammalian autophagy proteins do not seem to have homologues in yeast but are present in Dictyostelium, a social amoeba with two distinctive life styles, a unicellular stage in nutrient-rich conditions that differentiates upon starvation into a multicellular stage that depends on autophagy. This review focuses on the identification and annotation of the putative Dictyostelium autophagy genes and on the role of autophagy in development, cell death and infection by bacterial pathogens.  相似文献   

3.
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.  相似文献   

4.
Three species of small nuclear RNA from the lower eucaryote Dictyostelium discoideum have been isolated and characterized with regard to size, cellular abundance, modified nucleotide content, and 5'-end structures. Previous studies had shown that the nuclei of mammalian cells contain a number of discrete low molecular weight, nonribosomal, nontransfer RNA molecules known as small nuclear RNAs. The mammalian small nuclear RNAs range in size from approximately 100 to 250 nucleotides and are quite abundant, in some cases approaching ribosomal RNA in number of copies/cell. Some of these molecules have an unusual cap structure at their 5'-ends similar to that found on eucaryotic messenger RNAs, and a number contain a characteristic set of internal modifications as well. Our results indicate that the small nuclear RNAs of Dictyostelium resemble their counterparts in higher eucaryotic cells structurally, but are present in significantly fewer copies/cell. The implications of these findings for small nuclear RNA function are discussed.  相似文献   

5.
Analysis of the molecular mechanisms by which a pathogen interacts with the human host is most commonly performed using a mammalian model of infection. However, several virulence-related genes previously shown to be involved in mammalian infection with Cryptococcus neoformans have also been shown to play a role in the interaction of these pathogens with invertebrates, such as Acanthamoeba castellanii, Caenorhabditis elegans, Dictyostelium discoideum, Drosophila melanogaster and Galleria mellonella. The study of host-pathogen interactions using these model hosts has allowed rapid screening of mutant libraries and can be used for the study of evolutionarily preserved aspects of microbial virulence and host response.  相似文献   

6.
The recent release of the Dictyostelium genome sequence is important because Dictyostelium has become a much-favoured model system for cell and developmental biologists. The sequence has revealed a remarkably high total number of approximately 12 500 genes, only a thousand fewer than are encoded by Drosophila. Previous protein-sequence comparisons suggested that Dictyostelium is evolutionarily closer to animals and fungi than to plants, and the global protein sequence comparison, now made possible by the genome sequence, confirms this. This review focuses on several classes of proteins that are shared by Dictyostelium and animals: a highly sophisticated array of microfilament components, a large family of G-protein-coupled receptors and a diverse set of SH2 domain-containing proteins. The presence of these proteins strengthens the case for a relatively close relationship with animals and extends the range of problems that can be addressed using Dictyostelium as a model organism.  相似文献   

7.
The amoeba Dictyostelium discoideum shares many traits with mammalian macrophages, in particular the ability to phagocytose and kill bacteria. In response, pathogenic bacteria use conserved mechanisms to fight amoebae and mammalian phagocytes. Here we developed an assay using Dictyostelium to monitor phagocyte-bacteria interactions. Genetic analysis revealed that the virulence of Klebsiella pneumoniae measured by this test is very similar to that observed in a mouse pneumonia model. Using this assay, two new host resistance genes (PHG1 and KIL1) were identified and shown to be involved in intracellular killing of K. pneumoniae by phagocytes. Phg1 is a member of the 9TM family of proteins, and Kil1 is a sulphotransferase. The loss of PHG1 resulted in Dictyostelium susceptibility to a small subset of bacterial species including K. pneumoniae. Remarkably, Drosophila mutants deficient for PHG1 also exhibited a specific susceptibility to K. pneumoniae infections. Systematic analysis of several additional Dictyostelium mutants created a two-dimensional virulence array, where the complex interactions between host and bacteria are visualized.  相似文献   

8.
The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa , and identified mutants with attenuated virulence towards Dictyostelium . These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa .  相似文献   

9.
Understanding the mechanisms of drug action has been the primary focus for pharmacological researchers, traditionally using rodent models. However, non-sentient model systems are now increasingly being used as an alternative approach to better understand drug action or targets. One of these model systems, the social amoeba Dictyostelium, enables the rapid ablation or over-expression of genes, and the subsequent use of isogenic cell culture for the analysis of cell signalling pathways in pharmacological research. The model also supports an increasingly important ethical view of research, involving the reduction, replacement and refinement of animals in biomedical research. This review outlines the use of Dictyostelium in understanding the pharmacological action of two commonly used bipolar disorder treatments (valproic acid and lithium). Both of these compounds regulate mitogen activated protein (MAP) kinase and inositol phospholipid-based signalling by unknown means. Analysis of the molecular pathways targeted by these drugs in Dictyostelium and translation of discoveries to animal systems has helped to further understand the molecular mechanisms of these bipolar disorder treatments.  相似文献   

10.
Cells recognize external chemical gradients and translate these environmental cues into amplified intracellular signaling that results in elongated cell shape, actin polymerization toward the leading edge, and movement along the gradient. Mechanisms underlying chemotaxis are conserved evolutionarily from Dictyostelium amoeba to mammalian neutrophils. Recent studies have uncovered several parallel intracellular signaling pathways that crosstalk in chemotaxing cells. Here, we review these signaling mechanisms in Dictyostelium discoideum.  相似文献   

11.
Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechanism underlying this regulation, we analyzed the expression of recently identified Dictyostelium adhesion molecules (Sib proteins) that present features also found in mammalian integrins. sibA and sibC are both expressed in vegetative Dictyostelium cells, but the expression of sibC is repressed strongly in conditions where cellular adhesion decreases. Analysis of sibA and sibC mutant cells further suggests that variations in the expression levels of sibC account largely for changes in cellular adhesion in response to environmental cues.  相似文献   

12.
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.  相似文献   

13.
We have isolated a cDNA coding for beta-COP from Dictyostelium discoideum by polymerase chain reaction using degenerate primers derived from rat beta-COP. The complete cDNA clone has a size of 2.8 kb and codes for a protein with a calculated molecular mass of 102 kDa. Dictyostelium beta-COP exhibits highest homology to mammalian beta-COP, but it is considerably smaller due to a shortened variable region that is thought to form a linker between the highly conserved N- and C-terminal domains. Dictyostelium beta-COP is encoded by a single gene, which is transcribed at moderate levels into two RNAs that are present throughout development. To localize the protein, full-length beta-COP was fused to GFP and expressed in Dictyostelium cells. The fusion protein was detected on vesicles distributed all over the cells and was strongly enriched in the perinuclear region. Based on coimmunofluorescence studies with antibodies directed against the Golgi marker comitin, this compartment was identified as the Golgi apparatus. Beta-COP distribution in Dictyostelium was not brefeldin A sensitive being most likely due to the presence of a brefeldin A resistance gene. However, upon DMSO treatment we observed a reversible disassembly of the Golgi apparatus. In mammalian cells DMSO treatment had a similar effect on beta-COP distribution.  相似文献   

14.
The main route for fluid-phase uptake in Dictyostelium is macropinocytosis, a process powered by the actin cytoskeleton. Nutrients within the endocytosed fluid are digested and resorbed, disposal of remnants follows by exocytosis. Along the endocytic pathway, membrane fusion and fission events take place at multiple steps. The regulator and effector molecules involved in uptake and transit are largely conserved between higher and lower eukaryotes. This feature, together with its accessibility by molecular genetics, recommend Dictyostelium as a valuable model system for mammalian cells.  相似文献   

15.
Cell migration is initiated by plasma membrane protrusions, in the form of lamellipodia and filopodia. The latter rod-like projections may exert sensory functions and are found in organisms as distant in evolution as mammals and amoeba such as Dictyostelium discoideum. In mammals, lamellipodia protrusion downstream of the small GTPase Rac1 requires a multimeric protein assembly, the WAVE-complex, which activates Arp2/3-mediated actin filament nucleation and actin network assembly. A current model of filopodia formation postulates that these structures arise from a dendritic network of lamellipodial actin filaments by selective elongation and bundling. Here, we have analyzed filopodia formation in mammalian cells abrogated in expression of essential components of the lamellipodial actin polymerization machinery. Cells depleted of the WAVE-complex component Nck-associated protein 1 (Nap1), and, in consequence, of lamellipodia, exhibited normal filopodia protrusion. Likewise, the Arp2/3-complex, which is essential for lamellipodia protrusion, is dispensable for filopodia formation. Moreover, genetic disruption of nap1 or the WAVE-orthologue suppressor of cAMP receptor (scar) in Dictyostelium was also ineffective in preventing filopodia protrusion. These data suggest that the molecular mechanism of filopodia formation is conserved throughout evolution from Dictyostelium to mammals and show that lamellipodia and filopodia formation are functionally separable.  相似文献   

16.
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1(-) Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1(-) cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised.  相似文献   

17.
Vacuole membrane protein 1 (Vmp1) is a putative transmembrane protein that has been associated with different functions including autophagy, cell adhesion, and membrane traffic. Highly similar proteins are present in lower eukaryotes and plants although a homologue is absent in the fungi lineage. We have recently described the first loss-of-function mutation for a Vmp1 homologue in a model system, Dictyostelium discoideum. Our results give a more comprehensive view of the intricate roles played by this new gene. Dictyostelium Vmp1 is an endoplasmic reticulum-resident protein. Cells deficient in Vmp1 display pleiotropic defects in the context of the secretory pathway such as organelle biogenesis, the endocytic pathway, and protein secretion. The biogenesis of the contractile vacuole, an organelle necessary to survive under hypoosmotic conditions, is compromised as well as the structure of the endoplasmic reticulum and the Golgi apparatus. Transmission electron microscopy also shows abnormal accumulation of aberrant double-membrane vesicles, suggesting a defect in autophagosome biogenesis or maturation. The expression of a mammalian Vmp1 in the Dictyostelium mutant complements the phenotype suggesting a functional conservation during evolution. We are taking the first steps in understanding the function of this fascinating protein and recent studies have brought us more questions than answers about its basic function and its role in human pathology.  相似文献   

18.
Chemoattractant-induced Ras activation during Dictyostelium aggregation   总被引:1,自引:0,他引:1  
Ras proteins are highly conserved molecular switches that regulate cellular response to external stimuli. Dictyostelium discoideum contains an extensive family of Ras proteins that function in regulation of mitosis, cytoskeletal function and motility, and the onset of development. Little is known about the events that lead to the activation of Ras proteins in Dictyostelium, primarily owing to a lack of a biochemical assay to measure the levels of activated Ras. We have adapted an assay, used successfully to measure activated Ras in mammalian cells, to monitor activation of two Dictyostelium Ras proteins, RasC and RasG. We have found that the Ras-binding domain (RBD) of mammalian Raf1 was capable of binding to the activated form of RasG, but not to the activated form of RasC; however, the RBD of Schizosaccharomyces pombe Byr2 was capable of binding preferentially to the activated forms of both RasC and RasG. Using this assay, we discovered that RasC and RasG showed a rapid and transient activation when aggregation-competent cells were stimulated with the chemoattractant cAMP, and this activation did not occur in a number of cAMP signalling mutants. These data provide further evidence of a role for both RasC and RasG in the early development of Dictyostelium.  相似文献   

19.
Bacterial infections are complex events. They are studied in a variety of simple model systems, using mammalian or non-mammalian hosts, all of which fail to reproduce fully the situation in infected patients. Each model presents a combination of conceptual, practical, and ethical advantages and disadvantages. In this review, we detail the use of Dictyostelium discoideum amoebae as a model to study Pseudomonas aeruginosa. More specifically, our aim is to explore what this additional model system can bring to our understanding of Pseudomonas infections. The study of interactions between Dictyostelium amoebae and Pseudomonas provides a view of the selection pressures exerted by environmental predators on Pseudomonas. It also represents a unique system to assess the virulence of very large numbers of Pseudomonas strains.  相似文献   

20.
Dictyostelium discoideum is a good model of autophagy. However, the lack of autophagic flux techniques hinders the assessment of new mutants or drugs. One of these techniques, which has been used successfully in yeast and mammalian cells, but has not yet been described in Dictyostelium, is based on the presence of proteolytic fragments derived from autophagic degradation of expressed fusion proteins. Lysosomotropic agents such as NH 4Cl penetrate acidic compartments and raise their pH, thus allowing the accumulation and measurement of these cleaved fragments, which otherwise would be rapidly degraded. We have used this property to detect the presence of free GFP fragments derived from the fusion protein GFP-Tkt-1, a cytosolic marker. We demonstrate that this proteolytic event is dependent on autophagy and can be used to detect differences in the level of autophagic flux among different mutant strains. Moreover, treatment with NH4Cl also facilitates the assessment of autophagic flux by confocal microscopy using the marker RFP-GFP-Atg8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号