首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cycle-dependent telomere elongation by telomerase in budding yeast   总被引:1,自引:0,他引:1  
Li S 《Bioscience reports》2011,31(3):169-177
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.  相似文献   

2.
mRNA stability and translation are regulated by protein repressors that bind 3'-untranslated regions. PUF proteins provide a paradigm for these regulatory molecules: like other repressors, they inhibit translation, enhance mRNA decay, and promote poly(A) removal. Here we show that a single mRNA in Saccharomyces cerevisiae, encoding the HO endonuclease, is regulated by two distinct PUF proteins, Puf4p and Mpt5p. These proteins bind to adjacent sites and can co-occupy the mRNA. Both proteins are required for full repression and deadenylation in vivo; their removal dramatically stabilizes the mRNA. The two proteins act through overlapping but non-identical mechanisms: repression by Puf4p is dependent on deadenylation, whereas repression by Mpt5p can occur through additional mechanisms. Combinatorial action of the two regulatory proteins may allow responses to specific environmental cues and be common in 3'-untranslated region-mediated control.  相似文献   

3.
4.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

5.
Interference exists ubiquitously in many biological processes. Crossover interference patterns meiotic crossovers, which are required for faithful chromosome segregation and evolutionary adaption. However, what the interference signal is and how it is generated and regulated is unknown. We show that yeast top2 alleles which cannot bind or cleave DNA accumulate a higher level of negative supercoils and show weaker interference. However, top2 alleles which cannot religate the cleaved DNA or release the religated DNA accumulate less negative supercoils and show stronger interference. Moreover, the level of negative supercoils is negatively correlated with crossover interference strength. Furthermore, negative supercoils preferentially enrich at crossover-associated Zip3 regions before the formation of meiotic DNA double-strand breaks, and regions with more negative supercoils tend to have more Zip3. Additionally, the strength of crossover interference and homeostasis change coordinately in mutants. These findings suggest that the accumulation and relief of negative supercoils pattern meiotic crossovers.  相似文献   

6.
The actin cytoskeleton of budding yeast contains an extensive set of actin-associated proteins with conserved mammalian counterparts. For more than 20 years, yeast has been used as a model organism to dissect the in vivo functions of these factors, revealing an intricate web of genetic interactions in the cell. Now, a surge of biochemical reports is defining the physical interactions and activities of these proteins and providing mechanistic insights into their cellular roles. The emerging view is that most actin-associated proteins do not act alone but, rather, associate to form modular protein complexes that regulate actin assembly and organization.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae,heterochromatin structure is found at three chromosome regions,which are homothallic mating-type loci,rDNA regions and telomeres.To address how telomere heterochromatin is assembled under physiological conditions,we employed a de novo telomere addition system,and analyzed the dynamic chromatin changes of the TRP1 reporter gene during telomere elongation.We found that integrating a 255-bp,but not an 81-bp telomeric sequence near the TRP1 promoter could trigger Sir2 recruitment,active chromatin mark(s)' removal,chromatin compaction and TRP1 gene silencing,indicating that the length of the telomeric sequence inserted in the internal region of a chromosome is critical for determining the chromatin state at the proximal region.Interestingly,Rif1 but not Rif2 or yKu is indispensable for the formation of intra-chromosomal silent chromatin initiated by telomeric sequence.When an internal short telomeric sequence(e.g.,81 bp) gets exposed to become a de novo telomere,the herterochromatin features,such as Sir recruitment,active chromatin mark(s)' removal and chromatin compaction,are detected within a few hours before the de novo telomere reaches a stable length.Our results recapitulate the molecular dynamics and reveal a coherent picture of telomere heterochromatin formation.  相似文献   

8.
Qi H  Chen Y  Fu X  Lin CP  Zheng XF  Liu LF 《PloS one》2008,3(10):e3520
Telomere dysfunction is known to induce growth arrest (senescence) and cell death. However, the regulation of the senescence-death process is poorly understood. Here using a yeast dysfunctional telomere model cdc13-1, which carries a temperature sensitive-mutant telomere binding protein Cdc13p, we demonstrate that inhibition of TOR (Target of Rapamycin), a central regulator of nutrient pathways for cell growth, prevents cell death, but not growth arrest, induced by inactivation of Cdc13-1p. This function of TOR is novel and separable from its G1 inhibition function, and not associated with alterations in the telomere length, the amount of G-tails, and the telomere position effect (TPE) in cdc13-1 cells. Furthermore, antioxidants were also shown to prevent cell death initiated by inactivation of cdc13-1. Moreover, inhibition of TOR was also shown to prevent cell death induced by inactivation of telomerase in an est1 mutant. Interestingly, rapamycin did not prevent cell death induced by DNA damaging agents such as etoposide and UV. In the aggregate, our results suggest that the TOR signaling pathway is specifically involved in the regulation of cell death initiated by telomere dysfunction.  相似文献   

9.
RPA-like proteins mediate yeast telomere function   总被引:1,自引:0,他引:1  
Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.  相似文献   

10.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

11.
CDC17: an essential gene that prevents telomere elongation in yeast   总被引:26,自引:0,他引:26  
M J Carson  L Hartwell 《Cell》1985,42(1):249-257
The CDC17 gene product performs an essential stage-specific function during the Saccharomyces cerevisiae cell cycle. When cdc17-1 strains are grown at the maximum permissive temperature, recombination is induced preferentially in the genetic interval of the chromosome closest to the telomere. Telomeres are longer in cdc17 strains than in CDC17 strains at the permissive temperature because of addition of sequence near or in the poly (C1-3A) telomeric DNA and become even longer when cells are propagated at elevated temperatures. The mitotic recombination events require RAD52 function, but telomere growth does not. Long telomeres are maintained for many generations when crossed into a CDC17+ background, suggesting that telomere length is largely conserved during replication. The altered telomere length phenotype of cdc17 mutations is recessive and coreverts and cosegregates with the temperature-sensitive lethal phenotype.  相似文献   

12.
Yeast telomeres are anchored at the nuclear envelope (NE) through redundant pathways that require the telomere-binding factors yKu and Sir4. Significant variation is observed in the efficiency with which different telomeres are anchored, however, suggesting that other forces influence this interaction. Here, we show that subtelomeric elements and the insulator factors that bind them antagonize the association of telomeres with the NE. This is detectable when the redundancy in anchoring pathways is compromised. Remarkably, these same conditions lead to a reduction in steady-state telomere length in the absence of the ATM-kinase homologue Tel1. Both the delocalization of telomeres and reduction in telomere length can be induced by targeting of Tbf1 or Reb1, or the viral transactivator VP16, to a site 23 kb away from the TG repeat. This correlation suggests that telomere anchoring and a Tel1-independent pathway of telomere length regulation are linked, lending a functional significance to the association of yeast telomeres with the NE.  相似文献   

13.
A mutant with a defect in telomere elongation leads to senescence in yeast   总被引:105,自引:0,他引:105  
V Lundblad  J W Szostak 《Cell》1989,57(4):633-643
We describe a general assay designed to detect mutants of yeast that are defective for any of several aspects of telomere function. Using this assay, we have isolated a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss. This mutation defines a new gene, designated EST1 (for ever shorter telomeres). Null alleles of EST1 are not immediately inviable; instead, they have a senescence phenotype, due to the gradual loss of sequences essential for telomere function, leading to a progressive decrease in chromosomal stability and subsequent cell death.  相似文献   

14.
Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening.  相似文献   

15.
S Luke-Glaser  B Luke 《PloS one》2012,7(7):e42028
Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability. In some rare instances telomeres engage in Break-Induced Replication (BIR), a type of HR, in order to maintain telomere length in the absence of the enzyme telomerase. Here we have investigated how the yeast helicase, Mph1, affects DNA repair at both DSBs and telomeres. We have found that overexpressed Mph1 strongly inhibits BIR at internal DSBs however allows it to proceed at telomeres. Furthermore, while overexpressed Mph1 potently inhibits NHEJ at telomeres it has no effect on NHEJ at DSBs within the chromosome. At telomeres Mph1 is able to promote telomere uncapping and the accumulation of ssDNA, which results in premature senescence in the absence of telomerase. We propose that Mph1 is able to direct repair towards HR (thereby inhibiting NHEJ) at telomeres by remodeling them into a nuclease-sensitive structure, which promotes the accumulation of a recombinogenic ssDNA intermediate. We thus put forward that Mph1 is a double-edge sword at the telomere, it prevents NHEJ, but promotes senescence in cells with dysfunctional telomeres by increasing the levels of ssDNA.  相似文献   

16.
17.
18.
We recently demonstrated that cell elongation in plants is regulated by a triantagonistic bHLH system, in which three bHLH proteins, Activator of Cell Elongation 1 (ACE1), Arabidopsis ILI1 binding BHLH 1 (AtIBH1) and Paclobutrazol Resistance 1 (PRE1), competitively regulate the expression of genes for cell elongation. Here we show that ATBS1 Interacting Factor 2 (AIF2), AIF3 and AIF4 interact with PRE1 and ACE1, similar to AtIBH1, and also negatively regulate cell elongation in the triantagonistic bHLH system. The expression of each AIF is constitutive or induced by light, but AtIBH1 expression is dependent on BR signaling and developmental phase. These results indicate that AIFs and AtIBH1 may play different roles in cell elongation in different signaling pathways.  相似文献   

19.
The eukaryotic cell cycle is regulated at two points, the G1-S and G2-M boundaries. The molecular basis for these regulatory activities has recently been elucidated, in large part by the use of molecular and genetic analyses using unicellular yeast. The molecular characterization of cell-cycle regulation has revealed striking functional conservation among evolutionarily diverse cell types. For many eukaryotic cells, regulation of cell proliferation occurs primarily in the G1 interval. The G1 regulatory step, termed START, requires the activation of a highly conserved p34 protein kinase by association with a functionally redundant family of proteins, the G1 cyclins. Here we review studies using the genetically tractable budding yeast Saccharomyces cerevisiae, which have provided insight into the role of G1 cyclins in the regulation of START.  相似文献   

20.
Budding yeast telomeres are reversibly bound at the nuclear envelope through two partially redundant pathways that involve the Sir2/3/4 silencing complex and the Yku70/80 heterodimer. To better understand how this is regulated, we studied the role of SUMOylation in telomere anchoring. We find that the PIAS-like SUMO E3 ligase Siz2 sumoylates both Yku70/80 and Sir4 in vivo and promotes telomere anchoring to the nuclear envelope. Remarkably, loss of Siz2 also provokes telomere extension in a telomerase-dependent manner that is epistatic with loss of the helicase Pif1. Consistent with our previously documented role for telomerase in anchorage, normal telomere anchoring in siz2 Δ is restored by PIF1 deletion. By live-cell imaging of a critically short telomere, we show that telomeres shift away from the nuclear envelope when elongating. We propose that SUMO-dependent association with the nuclear periphery restrains bound telomerase, whereas active elongation correlates with telomere release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号